Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Article in English | MEDLINE | ID: mdl-31397954

ABSTRACT

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Subject(s)
Disease Resistance , Genes, Plant , Plant Diseases/virology , Potyvirus/pathogenicity , Solanum tuberosum/immunology , Animals , Aphids/virology , Breeding , NLR Proteins/immunology , Plant Diseases/immunology , Plants, Genetically Modified/virology , Solanum tuberosum/virology
2.
Plant Cell Rep ; 35(6): 1345-58, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26993327

ABSTRACT

KEY MESSAGE: Using DArT analysis, we demonstrated that all Solanum × michoacanum (+) S. tuberosum somatic hybrids contained all parental chromosomes. However, from 13.9 to 29.6 % of the markers from both parents were lost in the hybrids. Somatic hybrids are an interesting material for research of nucleus-cytoplasm interaction and sources of new nuclear and cytoplasmic combinations. Analyses of genomes of somatic hybrids are essential for studies on genome compatibility between species, its evolution and are important for their efficient exploitation. Diversity array technology (DArT) permits analysis of the composition of nuclear DNA of somatic hybrids. The nuclear genome compositions of 97 Solanum × michoacanum (+) S. tuberosum [mch (+) tbr] somatic hybrids from five fusion combinations and 11 autofused 4x mch were analyzed for the first time based on DArT markers. Out of 5358 DArT markers generated in a single assay, greater than 2000 markers were polymorphic between parents, of which more than 1500 have a known chromosomal location on potato genetic or physical map. DArT markers were distributed along the entire length of 12 chromosomes. We noticed elimination of markers of wild and tbr fusion components. The nuclear genome of individual somatic hybrids was diversified. Mch is a source of resistance to Phytophthora infestans. From 97 mch (+) tbr somatic hybrids, two hybrids and all 11 autofused 4x mch were resistant to P. infestans. The analysis of the structure of particular hybrids' chromosomes indicated the presence of markers from both parental genomes as well as missing markers spread along the full length of the chromosome. Markers specific to chloroplast DNA and mitochondrial DNA were used for analysis of changes within the organellar genomes of somatic hybrids. Random and non-random segregations of organellar DNA were noted.


Subject(s)
Solanum tuberosum/genetics , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , Disease Resistance/genetics , Genetic Markers/genetics , Hybridization, Genetic/genetics , Multiplex Polymerase Chain Reaction , Oligonucleotide Array Sequence Analysis/methods
3.
Theor Appl Genet ; 129(1): 131-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467474

ABSTRACT

KEY MESSAGE: Most QTL for leaf sucrose content map to positions that are similar to positions of QTL for tuber starch content in diploid potato. In the present study, using a diploid potato mapping population and Diversity Array Technology (DArT) markers, we identified twelve quantitative trait loci (QTL) for tuber starch content on seven potato chromosomes: I, II, III, VIII, X, XI, and XII. The most important QTL spanned a wide region of chromosome I (42.0­104.6 cM) with peaks at 63 and 84 cM which explained 17.6 and 19.2% of the phenotypic variation, respectively. ADP-glucose pyrophosphorylase (AGPase) is the key enzyme for starch biosynthesis. The gene encoding the large subunit of this enzyme, AGPaseS-a, was localized to chromosome I at 102.3 cM and accounted for 15.2% of the variance in tuber starch content. A more than 100-fold higher expression of this gene was observed in RT-qPCR assay in plants with the marker allele AGPaseS-a1334. This study is the first to report QTL for sucrose content in potato leaves. QTL for sucrose content in leaves were located on eight potato chromosomes: I, II, III, V, VIII, IX, X and XII. In 5-week-old plants, only one QTL for leaf sucrose content was detected after 8 h of darkness; four QTL were detected after 8 h of illumination. In 11-week-old plants, 6 and 3 QTL were identified after dark and light phases, respectively. Of fourteen QTL for leaf sucrose content, eleven mapped to positions that were similar to QTL for tuber starch content. These results provide genetic information for further research examining the relationships between metabolic carbon molecule sources and sinks in potato plants.


Subject(s)
Plant Leaves/chemistry , Plant Tubers/chemistry , Quantitative Trait Loci , Solanum tuberosum/genetics , Starch/chemistry , Sucrose/chemistry , Chromosome Mapping , Cloning, Molecular , Diploidy , Genetic Linkage , Genetic Markers , Glucose-1-Phosphate Adenylyltransferase/genetics , Phenotype , Plant Proteins/genetics , Solanum tuberosum/enzymology
4.
Mol Breed ; 35(12): 224, 2015.
Article in English | MEDLINE | ID: mdl-26612975

ABSTRACT

Potato (Solanum tuberosum L.) tubers exhibit significant variation in reducing sugar content directly after harvest, cold storage and reconditioning. Here, we performed QTL analysis for chip color, which is strongly influenced by reducing sugar content, in a diploid potato mapping population. Two QTL on chromosomes I and VI were detected for chip color after harvest and reconditioning. Only one region on chromosome VI was linked with cold-induced sweetening. Using the RT-PCR technique, we showed differential expression of the auxin-regulated protein (AuxRP) gene. The AuxRP transcript was presented in light chip color parental clone DG 97-952 and the RNA progeny of the bulk sample consisting of light chip color phenotypes after cold storage. This amplicon was absent in dark chip parental clone DG 08-26/39 and the RNA bulk sample of dark chip progeny. Genetic variation of AuxRP explained up to 16.6 and 15.2 % of the phenotypic variance after harvest and 3 months of storage at 4 °C, respectively. Using an alternative approach, the RDA-cDNA method was used to recognize 25 gene sequences, of which 11 could be assigned to potato chromosome VI. One of these genes, Heat-shock protein 90 (Hsp90), demonstrated higher mRNA and protein expression in RT-qPCR and western blotting assays in the dark chip color progeny bulk sample compared with the light chip color progeny bulk sample. Our study, for the first time, suggests that the AuxRP and Hsp90 genes are novel candidate genes capable of influencing the chip color of potato tubers.

5.
BMC Genet ; 13: 11, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22369123

ABSTRACT

BACKGROUND: Phytophthora infestans (Mont.) de Bary, the causal organism of late blight, is economically the most important pathogen of potato and resistance against it has been one of the primary goals of potato breeding. Some potentially durable, broad-spectrum resistance genes against this disease have been described recently. However, to obtain durable resistance in potato cultivars more genes are needed to be identified to realize strategies such as gene pyramiding or use of genotype mixtures based on diverse genes. RESULTS: A major resistance gene, Rpi-rzc1, against P. infestans originating from Solanum ruiz-ceballosii was mapped to potato chromosome X using Diversity Array Technology (DArT) and sequence-specific PCR markers. The gene provided high level of resistance in both detached leaflet and tuber slice tests. It was linked, at a distance of 3.4 cM, to violet flower colour most likely controlled by the previously described F locus. The marker-trait association with the closest marker, violet flower colour, explained 87.1% and 85.7% of variance, respectively, for mean detached leaflet and tuber slice resistance. A genetic linkage map that consisted of 1,603 DArT markers and 48 reference sequence-specific PCR markers of known chromosomal localization with a total map length of 1204.8 cM was constructed. CONCLUSIONS: The Rpi-rzc1 gene described here can be used for breeding potatoes resistant to P. infestans and the breeding process can be expedited using the molecular markers and the phenotypic marker, violet flower colour, identified in this study. Knowledge of the chromosomal localization of Rpi-rzc1 can be useful for design of gene pyramids. The genetic linkage map constructed in this study contained 1,149 newly mapped DArT markers and will be a valuable resource for future mapping projects using this technology in the Solanum genus.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Infections/genetics , Phytophthora infestans , Plant Diseases/genetics , Solanum tuberosum/genetics , Solanum/genetics , Breeding , Chromosome Mapping , Flowers/genetics , Genetic Markers , Quantitative Trait Loci
6.
Theor Appl Genet ; 124(2): 397-406, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21987281

ABSTRACT

Solanum ×  michoacanum (Bitter.) Rydb. is a diploid, 1 EBN (Endosperm Balance Number) nothospecies, a relative of potato originating from the area of Morelia in Michoacán State of Mexico that is believed to be a natural hybrid of S. bulbocastanum × S. pinnatisectum. Both parental species and S. michoacanum have been described as sources of resistance to Phytophthora infestans (Mont.) de Bary. The gene for resistance to potato late blight, Rpi-mch1, originating from S. michoacanum was mapped to the chromosome VII of the potato genome. It confers high level of resistance since the plants possessing it showed only small necrotic lesions or no symptoms of the P. infestans infection and we could ascribe over 80% of variance observed in the late blight resistance test of the mapping population to the effect of the closest marker. Its localization on chromosome VII may correspond to the localization of the Rpi1 gene from S. pinnatisectum. When mapping Rpi-mch1, one of the first genetic maps made of 798 Diversity Array Technology (DArT) markers of a plant species from the Solanum genus and the first map of S. michoacanum, a 1EBN potato species was constructed. Particular chromosomes were identified using 48 sequence-specific PCR markers, originating mostly from the Tomato-EXPEN 2000 linkage map (SGN), but also from other sources. Recently, the first DArT linkage map of 2 EBN species Solanum phureja has been published and it shares 197 DArT markers with map obtained in this study, 88% of which are in the concordant positions.


Subject(s)
Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant/genetics , Hybridization, Genetic , Phytophthora infestans , Plant Diseases/microbiology , Solanum tuberosum/genetics , Chromosome Mapping , Genetic Markers/genetics , Mexico , Polymerase Chain Reaction , Solanum tuberosum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...