Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(28): e2301280, 2023 11.
Article in English | MEDLINE | ID: mdl-37407030

ABSTRACT

Diabetic foot ulcers are chronic wounds that affect millions and increase the risk of amputation and mortality, highlighting the critical need for their early detection. Recent demonstrations of wearable sensors enable real-time wound assessment, but they rely on bulky electronics, making them difficult to interface with wounds. Herein, a miniaturized, wireless, battery-free wound monitor that measures lactate in real-time and seamlessly integrates with bandages for conformal attachment to the wound bed is introduced. Lactate is selected due to its multifaceted role in initiating healing. Studies in healthy and diabetic mice reveal distinct lactate profiles for normal and impaired healing wounds. A mathematical model based on the sensor data predicts wound closure rate within the first 3 days post-injury with ≈76% accuracy, which increases to ≈83% when pH is included. These studies underscore the significance of monitoring biomarkers during the inflammation phase, which can offer several benefits, including short-term use of wound monitors and their easy removal, resulting in lower risks of injury and infection at the wound site. Improvements in prediction accuracy can be achieved by designing mathematical models that build on multiple wound parameters such as pro-inflammatory and metabolic markers. Achieving this goal will require designing multi-analyte wound monitors.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Foot , Animals , Mice , Wound Healing , Bandages , Diabetic Foot/diagnosis , Lactates
2.
Angew Chem Int Ed Engl ; 61(20): e202116515, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35233907

ABSTRACT

Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two-phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The biphasic microcapsules are made of hydrogels with an outer phase of mixed molecular weight (MW) poly(ethylene glycol) diacrylate that mitigates premature payload release and an inner phase of high MW dextran with payload that breaks down in response to FUS. Compound release from microcapsules could be triggered as desired; 0.4 µg of payload was released across 16 on-demand steps over days. We detected broadband acoustic signals amidst low heating, suggesting inertial cavitation as a key mechanism for payload release. Overall, FUS-responsive microcapsules are a biocompatible and wirelessly triggerable structure for on-demand drug delivery over days to weeks.


Subject(s)
Hydrogels , Microfluidics , Capsules/chemistry , Drug Delivery Systems , Drug Liberation , Ultrasonography , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...