Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(15): 157101, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682997

ABSTRACT

Many classes of active matter develop spatial memory by encoding information in space. We present a framework based on mathematical billiards, wherein particles remember their past trajectories. Despite its deterministic rules, such a system is strongly nonergodic and exhibits intermittent statistics and complex pattern formation. We show how these features emerge from the dynamic change of topology. Our work illustrates how the dynamics of a single-body system can dramatically change with spatial memory, laying the groundwork to further explore systems with complex memory kernels.

2.
Sci Adv ; 9(42): eadi8643, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37862415

ABSTRACT

Mechanosensing, the transduction of extracellular mechanical stimuli into intracellular biochemical signals, is a fundamental property of living cells. However, endowing synthetic materials with mechanosensing capabilities comparable to biological levels is challenging. Here, we developed ultrasensitive and robust mechanoluminescent living composites using hydrogels embedded with dinoflagellates, unicellular microalgae with a near-instantaneous and ultrasensitive bioluminescent response to mechanical stress. Not only did embedded dinoflagellates retain their intrinsic mechanoluminescence, but with hydrophobic coatings, living composites had a lifetime of ~5 months under harsh conditions with minimal maintenance. We 3D-printed living composites into large-scale mechanoluminescent structures with high spatial resolution, and we also enhanced their mechanical properties with double-network hydrogels. We propose a counterpart mathematical model that captured experimental mechanoluminescent observations to predict mechanoluminescence based on deformation and applied stress. We also demonstrated the use of the mechanosensing composites for biomimetic soft actuators that emitted colored light upon magnetic actuation. These mechanosensing composites have substantial potential in biohybrid sensors and robotics.


Subject(s)
Dinoflagellida , Microalgae , Robotics , Biomimetics , Hydrogels
3.
Proc Natl Acad Sci U S A ; 120(3): e2216497120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36638210

ABSTRACT

Plants have developed intricate mechanisms to adapt to changing light conditions. Besides phototropism and heliotropism (differential growth toward light and diurnal motion with respect to sunlight, respectively), chloroplast motion acts as a fast mechanism to change the intracellular structure of leaf cells. While chloroplasts move toward the sides of the plant cell to avoid strong light, they accumulate and spread out into a layer on the bottom of the cell at low light to increase the light absorption efficiency. Although the motion of chloroplasts has been studied for over a century, the collective organelle motion leading to light-adapting self-organized structures remains elusive. Here, we study the active motion of chloroplasts under dim-light conditions, leading to an accumulation in a densely packed quasi-2D layer. We observe burst-like rearrangements and show that these dynamics resemble systems close to the glass transition by tracking individual chloroplasts. Furthermore, we provide a minimal mathematical model to uncover relevant system parameters controlling the stability of the dense configuration of chloroplasts. Our study suggests that the meta-stable caging close to the glass transition in the chloroplast monolayer serves a physiological relevance: Chloroplasts remain in a spread-out configuration to increase the light uptake but can easily fluidize when the activity is increased to efficiently rearrange the structure toward an avoidance state. Our research opens questions about the role that dynamical phase transitions could play in self-organized intracellular responses of plant cells toward environmental cues.


Subject(s)
Chloroplasts , Plant Cells , Chloroplasts/physiology , Sunlight , Phototropism , Plant Leaves/physiology , Light
4.
Rev Sci Instrum ; 93(11): 115103, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461538

ABSTRACT

We describe a setup to perform systematic studies on the spreading of droplets of complex fluids under microgravity conditions. Tweaking the gravitational acceleration under which droplets are deposited provides access to different regimes of the spreading dynamics, as quantified through the Bond number. In particular, microgravity allows us to form large droplets while remaining in the regime where surface tension effects and internal driving stresses are predominant over hydrostatic forces. The vip-drop2 (visco-plastic droplets on the drop tower) experimental module provides a versatile platform to study a wide range of complex fluids through the deposition of axisymmetric droplets. The module offers the possibility to deposit droplets on a precursor layer, which can be composed of the same or a different fluid. Furthermore, it allows us to deposit four droplets simultaneously while conducting shadowgraphy on all of them and observing either the flow field (through particle image velocimetry) or the stress distribution inside the droplet in the case of stress birefringent fluids. It was developed for a drop tower catapult system, is designed to withstand a vertical acceleration of up to 30 times the Earth's gravitational acceleration in the downward direction, and is capable of operating remotely under microgravity conditions. We provide a detailed description of the module and an exemplary data analysis for droplets spreading on-ground and in microgravity.

5.
Phys Rev Lett ; 125(2): 028102, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701324

ABSTRACT

One of the characteristic features of many marine dinoflagellates is their bioluminescence, which lights up nighttime breaking waves or seawater sliced by a ship's prow. While the internal biochemistry of light production by these microorganisms is well established, the manner by which fluid shear or mechanical forces trigger bioluminescence is still poorly understood. We report controlled measurements of the relation between mechanical stress and light production at the single cell level, using high-speed imaging of micropipette-held cells of the marine dinoflagellate Pyrocystis lunula subjected to localized fluid flows or direct indentation. We find a viscoelastic response in which light intensity depends on both the amplitude and rate of deformation, consistent with the action of stretch-activated ion channels. A phenomenological model captures the experimental observations.


Subject(s)
Dinoflagellida/physiology , Models, Biological , Dinoflagellida/chemistry , Dinoflagellida/ultrastructure , Ion Channels/chemistry , Ion Channels/physiology , Luminescence , Single-Cell Analysis , Stress, Mechanical , Viscoelastic Substances/chemistry
6.
Soft Matter ; 15(23): 4629-4638, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31111135

ABSTRACT

We experimentally study the impacts of viscous, immiscible oil drops into a deep pool of water. Within the target liquid pool, the impacting drop creates a crater, whose dynamics are studied. It is found that the inertia of pool liquid and drop viscosity are the main factors that determine the crater's maximum depth, while the additional factor of mutual immiscibility between the drop and pool liquids leads to interesting interfacial dynamics along the oil-water interface. We discuss how this can change the crater dynamics in its retraction phase, making possible a type of double-entrainment, whereby a tiny air bubble is entrapped inside a water-entrained oil drop. Further, we report the observation of a type of 'fingering' that occurs along the oil-drop rim, which we discuss, arises as a remnant of the well-known crown-splash instability.

7.
Langmuir ; 31(44): 12071-5, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26418827

ABSTRACT

The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

8.
Soft Matter ; 10(6): 808-12, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24836695

ABSTRACT

A novel methodology for controlling the spreading of droplets impacting a substrate is presented. The working fluid is a thermo-responsive polymer solution that undergoes a sol-gel transition above a specific temperature. It is shown that the maximum diameter of a droplet at equilibrium can be controlled through the substrate temperature of the substrate and the polymer concentration.


Subject(s)
Gels/chemistry , Polymers/chemistry , Solutions/chemistry , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...