Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 240(2): 105-117, 2021 04.
Article in English | MEDLINE | ID: mdl-33939940

ABSTRACT

AbstractThe nudibranch Tritonia exsulans (previously Tritonia diomedea) is known to have behaviors and neurons that can be modified by perturbations of the Earth's magnetic field. There is no definitive evidence for how this magnetic sense is used in nature. Using an exploratory approach, we tested for possible effects of magnetic perturbations based on underwater video of crawling patterns in the slugs' natural habitat, with magnets of varying strength deployed on the substrate. For analysis, we used a paired comparison of tracks of animals between segments 25-50 cm distant from the magnets and segments of the same tracks 0-25 cm from the magnets, to determine whether any differences depended on the strength of the magnet. Most track measurements (length, displacement, velocity, and tortuosity) showed no such differences. However, effects were observed for the changes in track headings between successive points. These results showed that tracks had relatively higher heading variability when they moved closer to stronger magnets. We suggest that this supports a hypothesis that T. exsulans continuously uses a magnetic sense to help maintain straight-line navigation. Further specific testing of the hypothesis is now needed to verify this new possibility for how animals can benefit from a compass sense.


Subject(s)
Gastropoda , Tritonia Sea Slug , Animals , Ecosystem , Magnets , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...