Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 156(3): R57-R67, 2018 09.
Article in English | MEDLINE | ID: mdl-29794023

ABSTRACT

The new corpora lutea (CLs) in pigs are formed from the preovulatory follicles after the luteinizing hormone (LH) surge. However, total autonomy and independence of CLs from LH up to Day 12 of cycle has recently been questioned. Transformation of estrous cycle CL to CL of pregnancy initiated by embryonic signals requires not only the cessation of prostaglandin F2 (PGF2α) supply to the luteal tissue but also needs the CL to overcome luteolytic acquisition and/or changing its sensitivity to PGF2α during Days 12-14 of pregnancy. The luteolytic cascade is prevented by inhibition of lymphocyte infiltration and leucocyte recruitment, limitation of cell apoptosis, upregulation of pregnancy-associated genes and an enhanced antiluteolytic role of PGE2 Our 'two-signal switch hypothesis' highlights the importance of post PGF2α and PGE2 receptor signaling pathways activation in CLs during luteolysis and rescue. The 'luteolytic switch' involves increased expression of many regression mediators and activation of the post PTGFR signaling pathway. The 'rescue switch' initiated by embryonic signals - estradiol 17ß and PGE2 - induces post PTGER2/4 pathway, turning the 'luteolytic switch' off and triggering activity of genes responsible for CL maintenance. In mid and late pregnancy, CLs are maintained by LH and the synergistic action of metabolic hormones. This paper provides an outline of recent views on CL regression, rescue and maintenance during pregnancy in pigs that conflict with previous paradigms and highlights new findings regarding the actions of prostaglandins, role of microRNAs (miRNA) and immune system and signaling pathways governing the life cycle of porcine CL.


Subject(s)
Corpus Luteum/physiology , Sus scrofa/physiology , Animals , Dinoprost/physiology , Dinoprostone/physiology , Estrous Cycle/physiology , Female , Gestational Age , Immunity , Luteinizing Hormone/physiology , Luteolysis/physiology , MicroRNAs/physiology , Pregnancy , Receptors, Prostaglandin E/physiology , Receptors, Prostaglandin E, EP2 Subtype/physiology , Receptors, Prostaglandin E, EP4 Subtype/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...