Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 107(6): 1503-1516, 2022 12 10.
Article in English | MEDLINE | ID: mdl-35977090

ABSTRACT

A molecular interaction between maternal endometrium and implanting conceptus can lead to activation of a variety of transcription factors that regulate expression of several genes necessary for the process of embryo implantation. While, signal transducer and activator of transcription 3 (STAT3) is responsible for decidualization and epithelial remodeling in humans and mice, its role in porcine endometrium has not been explored before. In the present study, we observed a pregnancy dependent increase in gene and protein expression of STAT3. Phosphorylated STAT3 was predominantly present in the endometrium of pregnant animals in luminal and glandular epithelium and in the endothelium of blood vessels with a weak staining in stromal cells. Interleukins, IL-1ß and IL-6, and epidermal growth factor (EGF)-induced STAT3 expression and phosphorylation in endometrial explants collected on Day 13 of the estrous cycle. Biological significance of STAT3 was evaluated by blocking its phosphorylation with STAT3-specific inhibitor, Stattic. Using porcine extracellular matrix (ECM) and adhesion molecule array, EGF was shown to induce changes in gene expression of ECM components: MMP1, MMP3, MMP12, LAMA1, SELL, and ICAM1, which was abrogated in the presence of Stattic. Transcriptional activity of STAT3 was observed in promoter regions of MMP3 and MMP12. Additionally, IL-6-induced STAT3 phosphorylation upregulated VEGF and VCAM1 abundances in endometrial-endothelial cells (EEC). Moreover, IL-6 resulted in an increase in EEC proliferation and capillary formation which was reversed in the presence of Stattic. Results of present study reveal a role for STAT3 phosphorylation in regulating extracellular matrix remodeling and angiogenesis in porcine endometrium to facilitate embryo implantation.


Subject(s)
Matrix Metalloproteinase 3 , STAT3 Transcription Factor , Animals , Female , Pregnancy , Embryo Implantation/physiology , Endometrium/metabolism , Endothelial Cells/metabolism , Epidermal Growth Factor , Extracellular Matrix/metabolism , Interleukin-6/metabolism , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 3/metabolism , STAT3 Transcription Factor/metabolism , Swine
2.
Genes (Basel) ; 11(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-33153118

ABSTRACT

Seminal plasma (SP) deposited in the porcine uterine tract at the time of mating is known to elicit an initial response that is beneficial for pregnancy outcome. However, whether SP has any long-term effect on alterations in endometrial molecular and cellular processes is not known. In this study, using microarray analyses, differential changes in endometrial transcriptome were evaluated after Day 6 of SP-infusion (6DPI) or Day 6 of pregnancy as compared to corresponding day of estrous cycle. Both, pregnancy and SP induced significant changes in the endometrial transcriptome and most of these changes were specific for a particular group. Functional analysis of differentially expressed genes (DEGs) using Ingenuity Pathway Analysis revealed that inhibition in immune response was affected by both pregnancy and SP infusion. Long-term effects of SP included differential expression of genes involved in inhibition of apoptosis, production of reactive oxygen species and steroid biosynthesis, and activation of processes such as proliferation of connective tissue cells and microvascular endothelial cells. Moreover, interleukin-2 and interferon-γ was identified to be responsible for regulating expression of many DEGs identified on 6DPI. The present study provides evidence for the long-term effects of SP on porcine endometrium that can be beneficial for pregnancy success.


Subject(s)
Endometrium/metabolism , Gene Expression Regulation/genetics , Semen/metabolism , Animals , Embryo Implantation/genetics , Endometrium/drug effects , Endothelial Cells/metabolism , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Microarray Analysis/methods , Pregnancy , Swine/genetics , Transcriptome/drug effects , Transcriptome/genetics
3.
Theriogenology ; 150: 150-157, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31973963

ABSTRACT

The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.


Subject(s)
Endometrium/physiology , Horses/physiology , Monocytes/physiology , Neutrophils/physiology , Animals , Endometrium/immunology , Epigenesis, Genetic , Female , Horses/genetics , Horses/immunology , Monocytes/immunology , Neutrophils/immunology
4.
Theriogenology ; 142: 196-206, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31606658

ABSTRACT

The maternal endometrium undergoes transformations during early pregnancy period to regulate the paracellular permeability across the epithelium and to enable adhesion between the trophoblast and endometrial epithelial cells. These transformations, under the influence of ovarian hormones, are associated with a partial loss in polarity of epithelial cell that is regulated by tight junctions (TJ), adherens junctions (AJ) and associated polarity protein complexes. This study examined the change in expression and distribution of proteins associated with TJs, AJs and apical partition defective (PAR) complex in porcine endometrium on Days 10, 13 and 16 of estrous cycle and pregnancy. Moreover, effect of hormones, progesterone (P4) and 17-ß estradiol (E2) on polar phenotype of endometrial epithelial cells was also investigated in vitro. There was pregnancy induced increase in gene and protein expression of TJ associated claudin-1 (CLDN1) on Day 13 of pregnancy as compared to corresponding day of estrous cycle and a decrease in TJ protein, zona occludens-1 (ZO-1) and PAR complex associated PAR6 expression levels on Day 16 of pregnancy (P < 0.05). Immunofluorescence studies revealed that on Days 10 and 13, TJ proteins occludin (OCLN) and ZO-1were primarily present in the apical region of lateral epithelial membrane. On Day 16 of pregnancy, whereas, OCLN redistributed into cytoplasm, ZO-1 decreased apically but was found to localize in the basal epithelium. The AJ proteins cadherin and ß-catenin were located at the apical epithelium on Day 10 of estrous cycle and pregnancy and Day 13 of estrous cycle. On Days 13 and 16 of pregnancy both proteins were expressed in the lateral membrane and co-localization between these proteins was observed on Day 16. On Day 10, PAR complex proteins PAR3, cell division control protein 42 (CDC42) and atypical protein kinase C (aPKC) ζ were observed in apical epithelium and in lateral membrane and CDC42 was also present in the cytoplasm of epithelium. Pregnancy induced redistribution of aPKCζ to cytoplasm and CDC42 to apical surface of luminal epithelium was observed on Days 13 and 16. The in vitro P4 and E2 treatment of epithelial cells mimicked in vivo results. These results indicate that P4 and E2 regulate alterations in epithelium that may facilitate embryo implantation and given the role of cadherin, catenin and CDC42 in embryo invasion, change in distribution of these proteins may limit the invasiveness of porcine conceptuses into the stroma.


Subject(s)
Cell Polarity/genetics , Endometrium/metabolism , Junctional Adhesion Molecules/genetics , Junctional Adhesion Molecules/metabolism , Pregnancy, Animal , Swine , Adherens Junctions/genetics , Adherens Junctions/metabolism , Animals , Cells, Cultured , Embryo Implantation/genetics , Female , Gene Expression , Gestational Age , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pregnancy , Pregnancy, Animal/genetics , Pregnancy, Animal/metabolism , Swine/embryology , Swine/genetics , Swine/metabolism , Tight Junctions/genetics , Tight Junctions/metabolism , Tissue Distribution
5.
Theriogenology ; 116: 17-27, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29763784

ABSTRACT

During early pregnancy, uterine epithelial cells undergo major transformations in their cytoskeleton that make the endometrium receptive for conceptus attachment. Actin binding proteins (ABPs) such as cofilin, gelsolin, and vinculin are involved in regulating actin polymerization, severing or crosslinking actin to integrins. However, whether ABPs are involved in epithelial remodeling or embryo adhesion in pigs is unknown. Therefore, the expression and distribution of these proteins were investigated in porcine endometrium on Days 10 and 13 (pre-implantation period), and 16 (attachment phase) of the estrous cycle or pregnancy. While day and pregnancy status had no effect on ABP gene expression, the protein abundance of vinculin was significantly higher on Day 13 than on Day 10 (p < 0.05) of the estrous cycle, and its abundance was highest on Day 16 in the pregnant endometrium. Immunofluorescent staining showed alterations in the distribution of these proteins depending on the day of the estrous cycle or early pregnancy examined. Double immunofluorescent staining for the ABPs and actin revealed that while cofilin co-localized with actin in the apical epithelium on Days 13 and 16 of the estrous cycle, in pregnant animals, it was strongly associated with actin in the sub-epithelial stroma of the endometrium. Gelsolin was also co-localized with actin in the apical epithelium on Days 13 and 16 of the estrous cycle, but this association was absent in the pregnant endometrium. Vinculin co-localized with actin in the sub-epithelial stroma on Days 13 and 16 irrespective of the reproductive status, but was additionally associated with actin in the apical epithelium on Day 16 of pregnancy. Vinculin interacted with phosphorylated focal adhesion kinase in the endometrial epithelium, and the interaction was dependent on estradiol-17ß, a conceptus-secreted pregnancy-recognition factor in pigs. Furthermore, silencing vinculin in the endometrial epithelial cells negatively affected trophoblast adhesion to them. In conclusion, the influence of stage and reproductive status on the specific localization of actin and its binding proteins in the porcine endometrium suggests that they play a role in regulating the endometrial cytoskeleton. Moreover, vinculin may facilitate conceptus attachment to the epithelium by interacting with focal adhesion kinase.


Subject(s)
Actins/metabolism , Embryo Implantation , Microfilament Proteins/metabolism , Pregnancy, Animal/metabolism , Swine , Actins/physiology , Animals , Cytoskeleton , Endometrium/metabolism , Epithelium/metabolism , Female , Microfilament Proteins/physiology , Pregnancy , Uterus/metabolism
6.
Zygote ; 25(2): 120-130, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28007046

ABSTRACT

Maternal effect genes (MEG) play a crucial role in early embryogenesis. In vitro culture conditions may affect MEG expression in porcine oocytes and embryos. We investigated whether in vitro culture medium supplementation with epidermal growth factor (EGF), IL-1ß or LIF (leukemia inhibitory factor) affects the mRNA level of ZAR-1 (zygote arrest 1), NPM2 (nucleoplasmin 2) and DPPA3 (developmental associated protein 3) in porcine MII oocytes and embryos. Cumulus-oocyte complexes (COCs) were matured in NCSU-37 medium (control) or in NCSU-37 with EGF 10 ng/ml, IL-1ß 10 ng/ml or LIF 50 ng/ml. After maturation for 44-46 h, MII oocytes were preserved for the analysis of MEG mRNA levels (experiment 1). In experiment 2, COCs were fertilized, and the presumptive zygotes were cultured in the same groups. Then, 2-, 4-, 8-cell embryos, morulae and blastocysts were collected for the analysis of MEG mRNA levels. LIF addition to the maturation medium increased MII oocyte numbers (P < 0.05), while EGF and IL-1ß did not affect oocyte maturation. Medium supplementation with EGF resulted in lower DPPA3 mRNA levels in MII oocytes and in 2- and 4-cell embryos versus control embryos (P < 0.05). LIF treatment increased DPPA3 mRNA levels in morulae and blastocysts (P < 0.05). Culture with EGF and IL-1ß decreased ZAR-1 and NPM2 mRNA levels in 2-cell embryos (P < 0.05). The inclusion of EGF or IL-1ß in the porcine in vitro production system influences ZAR-1, NPM2 and DPPA3 mRNA in MII oocytes and embryos but not beyond the 4-cell stage. LIF stimulates oocyte maturation and affects DPPA3 mRNA in porcine morulae and blastocysts in vitro.


Subject(s)
Egg Proteins/metabolism , Embryo, Mammalian/metabolism , Epidermal Growth Factor/pharmacology , Interleukin-1beta/pharmacology , Leukemia Inhibitory Factor/pharmacology , Metaphase/physiology , Oocytes/metabolism , Animals , Egg Proteins/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Female , Fertilization in Vitro/veterinary , Gastrointestinal Agents/pharmacology , Gene Expression Regulation/drug effects , In Vitro Techniques , Metaphase/drug effects , Nucleoplasmins/metabolism , Oocytes/cytology , Oocytes/drug effects , Swine
7.
J Proteomics ; 125: 76-88, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25976747

ABSTRACT

In mammals, successful pregnancy depends upon the readiness of uterus for implantation, followed by correct communication between the endometrium and the developing conceptus. The objective of this study was to elucidate changes in protein abundance associated with progression of estrous cycle and pregnancy from Day 9 to Day 12. We analyzed porcine endometrial tissue lysates by 2D-DIGE. Abundance of several proteins was altered depending upon the pregnancy status of animals. MALDI-TOF/TOF was used to identify a number of these proteins. Endometrial proteins that increased from Day 9 to Day 12 of cycle included annexin A4, beta-actin, apolipoprotein, ceruloplasmin and afamin. Changes in protein abundances associated with conceptus secreted factors, including haptoglobin, prolyl-4-hydroxylase, aldose-reductase and transthyretin, were also observed. Functional analysis revealed that endometrial proteins with altered abundance on Day 12 irrespective of the reproductive status were related to growth and remodeling, acute phase response and free radical scavenging, whereas transport and small molecule biochemistry were the functions activated in the pregnant endometrium as compared to the cyclic endometrium. These data provide information on dynamic physiological processes associated with uterine endometrial function of the cyclic and pregnant endometrium during period of maternal recognition of pregnancy in pigs and may potentially demonstrate a protein profile associated with successful pregnancy. BIOLOGICAL SIGNIFICANCE: In pigs, the fertility rates are generally very high but the early embryonic loss that occurs during the second and third weeks of gestation critically affects the potential litter size. Temporal changes that take place in the uterine environment during the period of early pregnancy in pigs and a cross-talk between the uterus and the embryo play an important role in embryonic survival and successful pregnancy. A better understanding of the molecular changes associated with these processes will pave way for understanding of endometrial functions and help towards increasing embryo survival. In this study, we present a 2D-DIGE based analysis of changes in porcine endometrial proteome that are associated with progression of cycle and progression of pregnancy. The network analysis of the results clearly revealed the pathways that are involved in rendering the endometrium receptive to the presence of embryo and also the changes that are result of molecular communication between the endometrium and the conceptuses. This comprehensive identification of proteomic changes in the porcine endometrium could be a foundation for targeted studies of proteins and pathways potentially involved in abnormal endometrial receptivity, placentation and embryo loss.


Subject(s)
Endometrium/metabolism , Estrous Cycle/physiology , Pregnancy Proteins/biosynthesis , Pregnancy/metabolism , Animals , Female , Proteomics , Swine
8.
Reprod Biol Endocrinol ; 12: 32, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24885667

ABSTRACT

BACKGROUND: The effect of hormonal estrus induction on maternal effect (MATER - maternal antigen that embryo requires, ZAR-1 - zygote arrest 1, and BMP15 - bone morphogenetic protein 15) and apoptosis-related genes expression (BCL-2 and BAX) in porcine cumulus-oocyte complexes (COCs) and selected follicular parameters was investigated in this study. METHODS: Gilts were divided into three groups: (I) with natural estrus; (II) stimulated with PMSG/hCG; and (III) with PMSG/hCG + PGF2alpha. Analysis of maternal effect and apoptosis-related transcripts expression in COCs, and progesterone synthesis pathway genes expression (P450scc and 3betaHSD) in granulosa cells was performed by qPCR. BMP15 protein expression in follicular fluid (FF) was analyzed by western blot. Oocyte nuclear maturation was assessed by aceto-orcein staining. Progesterone (P4) and estradiol (E2) concentrations in FF and serum were measured by ELISA. Data were analyzed with the one-way ANOVA and Bonferroni post-test or Kruskal-Wallis test and Dunns post-test. RESULTS: The highest expression of MATER, ZAR-1, and BMP15 genes was found in COCs recovered from gilts treated with PMSG/hCG when compared to PMSG/hCG + PGF2alpha-stimulated or non-stimulated gilts. Hormonal treatment did not affect the BMP15 protein expression in FF, but increased the expression of genes participating in P4 synthesis in granulosa cells. The higher percentage of immature oocytes was found in PMSG/hCG-treated when compared to the non-stimulated gilts. The expression of BCL-2 and BAX mRNA, and BCL-2/BAX mRNA ratio was significantly higher in COCs derived from PMSG/hCG-treated when compared to PMSG/hCG + PGF2alpha-treated or non-stimulated subjects. The level of P4 in serum was similar in animals from all experimental groups, while its concentration in FF was greater in gilts subjected to PMSG/hCG treatment than in PMSG/hCG + PGF2alpha-stimulated and non-stimulated gilts. The concentration of E2 did not differ in the serum or FF between the control group and the hormonally stimulated groups. CONCLUSIONS: Hormonal induction of estrus affected maternal effect gene transcripts levels in COCs and and oocyte nuclear maturation. The inclusion of PGF2alpha into the stimulation protocol enabled maintaining of physiological concentration of P4 in FF. Additionally, both hormonal treatments seem to be beneficial for apoptosis prevention through increasing BCL-2/BAX transcript ratio.


Subject(s)
Cumulus Cells/drug effects , Fertility Agents, Female/pharmacology , Gene Expression Regulation, Developmental/drug effects , Oocytes/drug effects , Ovulation Induction/veterinary , Proto-Oncogene Proteins c-bcl-2/metabolism , Sus scrofa/physiology , Animals , Autoantigens/genetics , Autoantigens/metabolism , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Chorionic Gonadotropin/pharmacology , Cumulus Cells/cytology , Cumulus Cells/metabolism , Dinoprost/pharmacology , Egg Proteins/genetics , Egg Proteins/metabolism , Estrus/drug effects , Female , Gonadotropins, Equine/pharmacology , Oocyte Retrieval/veterinary , Oocytes/cytology , Oocytes/metabolism , Oogenesis/drug effects , Progesterone/blood , Progesterone/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
9.
Mol Reprod Dev ; 81(3): 270-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24382630

ABSTRACT

Infusion of seminal plasma in the uterus is known to elicit an instant inflammatory response in the porcine uterus, but whether or not it prepares a uterine immunological response to the presence of conceptuses is not well understood. Seminal plasma induced long-term modulatory effects and conceptus-induced immune changes in leukocyte populations were measured by flow cytometry and mRNAs for various cytokines by quantitative reverse-transcriptase PCR in porcine endometrium collected on Days 6 and 13 from cycling and pregnant animals or from animals given seminal plasma infusions. Seminal plasma infusion induced long-term modulatory effects, resulting in significantly more endometrial FoxP3-positive T-regulatory and T-helper cells 6 days after infusion as compared to cycling and pregnant animals. The number of T-cytotoxic and T-null cells did not change between the studied groups. The early molecular effects of seminal plasma were not observed at 13-days post-infusion, although animals on Day 13 of pregnancy did show significantly more T-cells (of any type investigated). Seminal plasma also showed a delayed effect on cytokine expression, specifically exhibiting a significant increase in interleukin 10 (IL10) and a decrease in granulocyte macrophage colony-stimulating factor (GMCSF) gene expression on Day 13 as compared to Day 6 of cycling or pregnant gilts. The results indicate a delayed regulatory effect of seminal plasma on immune responses in the porcine uterus, which are similar to immune changes generated by implanting conceptuses.


Subject(s)
Cytokines/metabolism , Endometrium/cytology , Semen/physiology , T-Lymphocytes/cytology , Animals , Cytokines/analysis , Embryo, Mammalian , Endometrium/chemistry , Endometrium/metabolism , Epithelial Cells/cytology , Female , Leukocyte Count , Male , Pregnancy , Stromal Cells/cytology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...