Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 672, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182613

ABSTRACT

Ferroelectricity in metals has advanced since the initial discovery of nonmagnetic ferroelectric-like metal LiOsO[Formula: see text], anchored in the Anderson and Blount prediction. However, evaluating the spontaneous electric polarization (SEP) of this metal has been hindered by experimental and theoretical obstacles. The experimental challenge arises from difficulties in switching polarization using an external electric field, while the theoretical limitation lies in existing methods applicable only to nonmetals. Zabalo and Stengel (Phys Rev Lett 126:127601, 2021, https://doi.org/10.1103/PhysRevLett.126.127601 ) addressed the experimental obstacle by proposing flexoelectricity as an alternative for practical polarization switching in LiOsO[Formula: see text], which requires a critical bending radius similar to BaTiO[Formula: see text]. In this study, we focus on resolving the theoretical obstacle by modifying the Berry phase and Wannier functions approaches within density functional theory plus modern theory of polarization. By employing these modifications, we calculate the SEP of LiOsO[Formula: see text], comparable to the polarization of BaTiO[Formula: see text]. We validate our predictions using various ways. This study confirms the coexistence of ferroelectricity and metallicity in this new class of ferroelectric-like metals. Moreover, by addressing the theoretical limitation and providing new insights into polarization properties, our study complements the experimental flexoelectricity proposal and opens avenues for further exploration and manipulation of polarization characteristics. The developed approaches, incorporating modified Berry phase and Wannier function techniques, offer promising opportunities for studying and designing novel materials, including bio- and nano-ferroelectric-like metals. This study contributes to the advancement of ferroelectricity in metals and provides a foundation for future research in this exciting field.

2.
Sci Rep ; 12(1): 663, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35027573

ABSTRACT

We investigate temperature, pressure, and localization dependence of thermoelectric properties, phonon and de Haas-van Alphen (dHvA) frequencies of the anti-ferromagnetic (AFM) CeIn[Formula: see text] using density functional theory (DFT) and local, hybrid, and band correlated functionals. It is found that the maximum values of thermopower, power factor, and electronic figure of merit of this compound occur at low (high) temperatures provided that the 4f-Ce electrons are (not) localized enough. The maximum values of the thermopower, power factor, electronic figure of merit (conductivity parameters), and their related doping levels (do not) considerably depend on the localization degree and pressure. The effects of pressure on these parameters substantially depend on the degree of localization. The phonon frequencies are calculated to be real which shows that the crystal is dynamically stable. From the phonon band structure, the thermal conductivity is predicted to be homogeneous. This prediction is found consistent with the thermal conductivity components calculated along three Cartesian directions. In analogous to the thermoelectric properties, it is found that the dHvA frequencies also depend on both pressure and localization degree. To ensure that the phase transition at Néel temperature cannot remarkably affect the results, we verify the density of states (DOS) of the compound at the paramagnetic phase constructing a non-collinear magnetic structure where the angles of the spins are determined so that the resultant magnetic moment vanishes. The non-collinear results reveal that the DOS and whence the thermoelectric properties of the compound are not changed considerably by the phase transition. To validate the accuracy of the results, the total and partial DOSs are recalculated using DFT plus dynamical mean-field theory (DFT+DMFT). The DFT+DMFT DOSs, in agreement with the hybrid DOSs, predict the Kondo effect in this compound.

3.
RSC Adv ; 9(62): 36182-36197, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-35540618

ABSTRACT

Experimental evidences show that Ce-based compounds can be good candidates for thermoelectric applications due to their high thermoelectric efficiencies at low temperatures. However, thermoelectric properties have been studied less than the other properties for CeRhIn5, a technologically and fundamentally important compound. Thus, we comprehensively investigate the thermoelectric properties, including the Seebeck coefficient, electrical conductivity, electronic part of thermal conductivity, power factor and electronic figure of merit, by a combination of quantum mechanical density functional and semiclassical Boltzmann theories, including relativistic spin-orbit interactions using different exchange-correlation functionals at temperatures T ≤ 300 K for CeRhIn5 along its a and c crystalline axes. The temperature dependences of the thermoelectric quantities are investigated. Our results reveal a better Seebeck coefficient, electrical conductivity, power factor and thermoelectric efficiency at T ≪ 300, in agreement with various other Ce-based compounds, when a high degree of localization is considered for the 4f-Ce electrons. The Seebeck coefficient, power factor and thermoelectric efficiency are made more efficient near room temperature by decreasing the degree of localization for 4f-Ce electrons. Our results also show that the thermoelectric efficiency along the a crystalline axis is slightly better than that of the c axis. We also investigate the effects of hydrostatic pressure on the thermoelectric properties of the compound at low and high temperatures. The results show that the effects of imposing pressure strongly depend on the degree of localization considered for 4f-Ce electrons.

4.
Sci Rep ; 6: 31734, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27553428

ABSTRACT

Two dramatic discrepancies between previous reliable experimental and ab initio DFT results are identified to occur at two different pressures in CeIn3, as discussed through the paper. We physically discuss sources of the phenomena and indicate how to select an appropriate functional for a given pressure. We show that these discrepancies are due to the inaccuracy of the DFT + U scheme with arbitrary Ueff and that hybrid functionals can provide better agreement with experimental data at zero pressure. The hybrid B3PW91 approach provides much better agreement with experimental data than the GGA + U. The DFT + U scheme proves to be rather unreliable since it yields completely unpredictable oscillations for the bulk modulus with increasing values of Ueff. Our B3PW91 results show that the best lattice parameter (bulk modulus) is obtained using a larger value of α parameter, 0.4 (0.3 or 0.2), than that of usually considered for the AFM phase. We find that for hybrid functionals, the amount of non-local exchange must first be calibrated before conclusions are drawn. Therefore, we first systematically optimize the α parameter and using it investigate the magnetic and electronic properties of the system. We present a theoretical interpretation of the experimental results and reproduce them satisfactorily.

SELECTION OF CITATIONS
SEARCH DETAIL
...