Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Chim Slov ; 61(3): 615-22, 2014.
Article in English | MEDLINE | ID: mdl-25286218

ABSTRACT

One of the major challenges when analyzing very low amounts of PEGylated proteins is finding a sensitive analytical method. Immunoassays are most frequently used, however, conjugation can partially or completely mask protein epitopes, which can substantially lower the response and influence the quantitation range. Here we describe a novel assay that allows quantification of low amounts of PEGylated or differently conjugated proteins. The basic principle is similar to the classic sandwich ELISA but there are no antibodies used neither for capture nor for detection. Instead, Ni(2+) chelation is exploited for capture and affinity between streptavidin and biotin for the detection step. The usefulness of the assay was proven in permeation studies (Caco-2 cell model) using diversely conjugated TNF-a protein. This approach could be extended to numerous other proteins eliminating the need to develop a separate assay for each protein/project.


Subject(s)
Polyethylene Glycols/chemistry , Proteins/chemistry , In Vitro Techniques , Permeability
2.
Acta Chim Slov ; 59(1): 59-69, 2012 Mar.
Article in English | MEDLINE | ID: mdl-24061173

ABSTRACT

Recent studies have revealed that at lower cultivation temperatures (25 °C) much higher percentage of correctly folded recombinant hG-CSF protein can be extracted from inclusion bodies. Hence, the goal of our research was to investigate mechanisms determining characteristics of non-classical inclusion bodies production using gene expression profiling, focusing on proteases and chaperones gene expression. Statistical analysis of microarray data showed prominent changes in energy metabolism, in metabolism of amino acids and nucleotides, as well as in biosynthesis of cofactors and secondary metabolites if the culture was grown below its optimal temperature. Moreover, 24 differentially expressed up to now known genes classified among proteases, chaperones and other heat or stress related genes. Among chaperones UspE and among proteases YaeL and YeaZ might play an important role in accumulation of correctly folded recombinant proteins. Membrane localized protease yaeL gene was found to have higher activity at 25 °C and is thus potentially functionally related to the more efficient recombinant protein production at lower temperatures. The results of this study represent advance in the understanding of recombinant protein production in E. coli. Genes potentially influencing production of recombinant protein at lower growth temperature represent basis for further research towards improvement of E. coli production strains as well as fermentation process.

3.
Microb Cell Fact ; 7: 6, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18328094

ABSTRACT

BACKGROUND: Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed. RESULTS: To avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95 degrees C for 10 minutes prior to storage at -20 degrees C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well) enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25 degrees C and the correlation between PCN and protein accumulation was established. CONCLUSION: Using whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...