Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 32(9-10): 1085-93, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21882561

ABSTRACT

Olive oil mill wastewater (OMW) has a high polluting power, with total phenolics (TP) around 2.5 g l(-1) and chemical oxygen demand (COD) 85 g l(-1). Biological systems offer advantages in treating this type of agro-industrial wastewater. The performance of phenol-adapted Ralstonia eutropha for aerobic biotreatment of OMW has been studied, and a TP concentration of 250 mg l(-1) found to be fully degraded within 24 h. This simple procedure may be adopted as a pretreatment prior to the normal aerobic or anaerobic techniques used for treating OMW. The biodegradative capability of this non-pathogenic gram-negative bacterium towards the TP and COD content of OMW has been evaluated. The adapted free cells were found able to decrease TP and COD in the undiluted OMW by 56% and 42%, respectively. The Monod equation was found suitable to describe the capacity of the cells for growing on undiluted OMW, giving micromax 0.083 per day and Ks = 1846 mg l(-1). Using a packed-bed reactor the performance of loofa-immobilized R. eutropha was assessed and the reduction in TP and COD shown to be 73% and 64%, respectively.


Subject(s)
Cupriavidus necator/metabolism , Plant Oils/chemistry , Plant Oils/metabolism , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Agriculture/methods , Industrial Waste/prevention & control , Olive Oil , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...