Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 146(5): 2153-2162, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36314058

ABSTRACT

Human pain is a salient stimulus composed of two main components: a sensory/somatic component, carrying peripheral nociceptive sensation via the spinothalamic tract and brainstem nuclei to the thalamus and then to sensory cortical regions, and an affective (suffering) component, where information from central thalamic nuclei is carried to the anterior insula, dorsal anterior cingulate cortex and other regions. While the sensory component processes information about stimulus location and intensity, the affective component processes information regarding pain-related expectations, motivation to reduce pain and pain unpleasantness. Unlike investigations of acute pain that are based on the introduction of real-time stimulus during brain recordings, chronic pain investigations are usually based on longitudinal and case-control studies, which are limited in their ability to infer the functional network topology of chronic pain. In the current study, we utilized the unique opportunity to target the CNS's pain pathways in two different hierarchical locations to establish causality between pain relief and specific connectivity changes seen within the salience and sensorimotor networks. We examined how lesions to the affective and somatic pain pathways affect resting-state network topology in cancer patients suffering from severe intractable pain. Two procedures have been employed: percutaneous cervical cordotomy (n = 15), hypothesized to disrupt the transmission of the sensory component of pain along the spinothalamic tract, or stereotactic cingulotomy (n = 7), which refers to bilateral intracranial ablation of an area in the dorsal anterior cingulate cortex and is known to ameliorate the affective component of pain. Both procedures led to immediate significant alleviation of experienced pain and decreased functional connectivity within the salience network. However, only the sensory procedure (cordotomy) led to decreased connectivity within the sensorimotor network. Thus, our results support the existence of two converging systems relaying experienced pain, showing that pain-related suffering can be either directly influenced by interfering with the affective pathway or indirectly influenced by interfering with the ascending spinothalamic tract.


Subject(s)
Chronic Pain , Humans , Magnetic Resonance Imaging/methods , Brain , Parietal Lobe , Brain Mapping/methods
2.
Neurosci Biobehav Rev ; 138: 104694, 2022 07.
Article in English | MEDLINE | ID: mdl-35623447

ABSTRACT

Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.


Subject(s)
Neurofeedback , Amygdala/diagnostic imaging , Amygdala/physiology , Brain/diagnostic imaging , Brain Mapping , Feasibility Studies , Humans , Magnetic Resonance Imaging/methods , Neurofeedback/methods
3.
Mol Psychiatry ; 27(3): 1848-1854, 2022 03.
Article in English | MEDLINE | ID: mdl-34974525

ABSTRACT

Creative thinking represents a major evolutionary mechanism that greatly contributed to the rapid advancement of the human species. The ability to produce novel and useful ideas, or original thinking, is thought to correlate well with unexpected, synchronous activation of several large-scale, dispersed cortical networks, such as the default network (DN). Despite a vast amount of correlative evidence, a causal link between default network and creativity has yet to be demonstrated. Surgeries for resection of brain tumors that lie in proximity to speech related areas are performed while the patient is awake to map the exposed cortical surface for language functions. Such operations provide a unique opportunity to explore human behavior while disrupting a focal cortical area via focal electrical stimulation. We used a novel paradigm of individualized direct cortical stimulation to examine the association between creative thinking and the DN. Preoperative resting-state fMRI was used to map the DN in individual patients. A cortical area identified as a DN node (study) or outside the DN (controls) was stimulated while the participants performed an alternate-uses-task (AUT). This task measures divergent thinking through the number and originality of different uses provided for an everyday object. Baseline AUT performance in the operating room was positively correlated with DN integrity. Direct cortical stimulation at the DN node resulted in decreased ability to produce alternate uses, but not in the originality of uses produced. Stimulation in areas that when used as network seed regions produced a network similar to the canonical DN was associated with reduction of creative fluency. Stimulation of areas that did not produce a default-like network (controls) did not alter creative thinking. This is the first study to causally link the DN and creative thinking.


Subject(s)
Brain Mapping , Creativity , Brain/physiology , Brain Mapping/methods , Cognition/physiology , Humans , Magnetic Resonance Imaging
4.
Front Psychiatry ; 11: 67, 2020.
Article in English | MEDLINE | ID: mdl-32153443

ABSTRACT

BACKGROUND: Ruminative responding involves repetitive and passive thinking about one's negative affect. This tendency interferes with initiation of goal-directed rewarding strategies, which could alleviate depressive states. Such reward-directed response selection has been shown to be mediated by ventral striatum/nucleus accumbens (VS/NAcc) function. However, to date, no study has examined whether trait rumination relates to VS/NAcc functionality. Here, we tested whether rumination moderates VS/NAcc function both in response to reward and during a ruminative state. METHODS: Trait rumination was considered dimensionally using Rumination Response Scale (RRS) scores. Our sample (N = 80) consisted of individuals from a community sample and from patients diagnosed with major depressive disorder, providing a broad range of RRS scores. Participants underwent fMRI to assess two modes of VS/NAcc functionality: 1) in response to reward, and 2) during resting-state, as a proxy for ruminative state. We then tested for associations between RRS scores and VS/NAcc functional profiles, statistically controlling for overall depressive symptom severity. RESULTS: RRS scores correlated positively with VS/NAcc response to reward. Furthermore, we noted that higher RRS scores were associated with increased ruminative-dependent resting-state functional connectivity of the VS/NAcc with the left orbitofrontal cortex. CONCLUSIONS: These findings suggest that ruminative tendencies manifest in VS/NAcc reward- and rumination-related functions, providing support for a theoretical-clinical perspective of rumination as a habitual impairment in selection of rewarding, adaptive coping strategies.

5.
Neuromodulation ; 22(8): 884-893, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29741803

ABSTRACT

OBJECTIVES: Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. MATERIALS AND METHODS: Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. RESULTS: Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. CONCLUSIONS: Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences.


Subject(s)
Electric Stimulation , Emotions/physiology , Magnetic Resonance Imaging , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation , Adult , Affect , Depression/psychology , Female , Humans , Male , Neural Pathways , Stress, Psychological/psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...