Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857423

ABSTRACT

Taste receptors are found in the gastrointestinal tract, where they are susceptible to dietary modulation, a key point that is crucial for diet-related responses. Insects are sustainable and good-quality protein sources. This study analyzed the impact of insect consumption on the modulation of taste receptor expression across various segments of the rat intestine under healthy or inflammatory conditions. Female Wistar rats were supplemented with Tenebrio molitor (T) or Alphitobius diaperinus (B), alongside a control group (C), over 21 days under healthy or LPS-induced inflammation. The present study reveals, for the first time, that insect consumption modulates taste receptor gene expression, mainly in the ascending colon. This modulation was not found under inflammation. Integrative analysis revealed colonic Tas1r1 as a key discriminator for insect consumption (C = 1.04 ± 0.32, T = 1.78 ± 0.72, B = 1.99 ± 0.82, p-value <0.05 and 0.01, respectively). Additionally, correlation analysis showed the interplay between intestinal taste receptors and metabolic and inflammatory responses. These findings underscore how insect consumption modulates taste receptors, influencing intestinal function and broader physiological mechanisms.

2.
Food Funct ; 15(8): 4552-4563, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38584501

ABSTRACT

The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.


Subject(s)
Edible Insects , Insect Proteins , Rats, Wistar , Tenebrio , Animals , Rats , Humans , Male , Intestines/drug effects , Intestines/immunology , Intestinal Diseases , Disease Models, Animal , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
3.
Front Nutr ; 10: 1215889, 2023.
Article in English | MEDLINE | ID: mdl-37712001

ABSTRACT

For decades bitter taste receptors (TAS2R) were thought to be located only in the mouth and to serve as sensors for nutrients and harmful substances. However, in recent years Tas2r have also been reported in extraoral tissues such as the skin, the lungs, and the intestine, where their function is still uncertain. To better understand the physiological role of these receptors, in this paper we focused on the intestine, an organ in which their activation may be similar to the receptors found in the mouth. We compare the relative presence of these receptors along the gastrointestinal tract in three main species of biomedical research (mice, rats and humans) using sequence homology. Current data from studies of rodents are scarce and while more data are available in humans, they are still deficient. Our results indicate, unexpectedly, that the reported expression profiles do not always coincide between species even if the receptors are orthologs. This may be due not only to evolutionary divergence of the species but also to their adaptation to different dietary patterns. Further studies are needed in order to develop an integrated vision of these receptors and their physiological functionality along the gastrointestinal tract.

4.
Nutrients ; 14(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35807788

ABSTRACT

Western-style diet is an obesogenic diet for rodents and humans due to its content of saturated fat and refined sugars, mainly sucrose and, in consequence, sucrose-derived fructose. This type of diets relates with intestinal disturbances when consumed regularly. The aim of this work was to analyse the adaptive morphologic and functional changes at intestinal level derived from the unhealthy components of a Cafeteria diet in rats. The effect of grape seed proanthocyanidin extract (GSPE) in the prevention of diet-induced intestinal dysfunction was also analysed. Rats were fed a 17-week cafeteria diet (CAF) without or with oral-GSPE supplementation, either intermittent GSPE administration (SIT-CAF); last 10-day GSPE supplementation at doses of 100 mg/kg and 500 mg/kg day (CORR-100) and (CORR-500) or pre-supplementation with 500 mg/kg GSPE (PRE-CAF). GSPE-CAF supplemented groups showed similar results to CAF diet group regarding morphology and inflammatory score in the duodenum. As an adaptive response to diet, CAF increased intestinal absorptive surface (1.24-fold) all along the intestinal tract and specifically in the small intestine, duodenum, due to increase villus height and a higher villus/crypt ratio, in addition to increase in Goblet cell percentage and inflammatory index. Animals fed GSPE at the current doses and times had higher villus heights and absorptive surface similar to Cafeteria diet group. In the duodenum, villus height correlated with body weight at 17 week and negatively with MLCK gene expression. In the colon, villus height correlated with the percentage of goblet cells. In conclusion, the CAF diet produced adaptive modifications of the intestine by increasing the absorptive area of the small intestine, the percentage of goblet cells and the inflammatory index at the duodenal level. GSPE supplementation can partially reverse the intestinal morphological changes induced by the high fat/sucrose diet when administered intermittently.


Subject(s)
Grape Seed Extract , Proanthocyanidins , Animals , Diet, Western/adverse effects , Grape Seed Extract/pharmacology , Intestines , Proanthocyanidins/pharmacology , Rats , Rats, Wistar , Sucrose/pharmacology
5.
Front Endocrinol (Lausanne) ; 13: 854718, 2022.
Article in English | MEDLINE | ID: mdl-35345470

ABSTRACT

Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.


Subject(s)
Taste Buds , Taste , Animals , Gastrointestinal Tract , Receptors, G-Protein-Coupled/genetics , Taste/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...