Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731542

ABSTRACT

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Subject(s)
Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
2.
Molecules ; 28(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894641

ABSTRACT

In this study, ceria nanoparticles (NPs) and deep eutectic solvent (DES) were synthesized, and the ceria-NP's surfaces were modified by DES to form DES-ceria NP filler to develop mixed matrix membranes (MMMs). For the sake of interface engineering, MMMs of 2%, 4%, 6% and 8% filler loadings were fabricated using solution casting technique. The characterizations of SEM, FTIR and TGA of synthesized membranes were performed. SEM represented the surface and cross-sectional morphology of membranes, which indicated that the filler is uniformly dispersed in the polysulfone. FTIR was used to analyze the interaction between the filler and support, which showed there was no reaction between the polymer and DES-ceria NPs as all the peaks were consistent, and TGA provided the variation in the membrane materials with respect to temperature, which categorized all of the membranes as very stable and showed that the trend of stability increases with respect to DES-ceria NPs filler loading. For the evaluation of efficiency of the MMMs, the gas permeation was tested. The permeability of CO2 was improved in comparison with the pristine Polysulfone (PSF) membrane and enhanced selectivities of 35.43 (αCO2/CH4) and 39.3 (αCO2/N2) were found. Hence, the DES-ceria NP-based MMMs proved useful in mitigating CO2 from a gaseous mixture.

3.
Artif Organs ; 45(11): 1377-1390, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34152645

ABSTRACT

In the current study, a phase inversion scheme was employed to fabricate hydroxyapatite (HA)/polysulfone (PSF)-based asymmetric membranes using a film applicator with water as a solvent and nonsolvent exchanging medium. Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) spectroscopic studies were conducted to confirm the bonding chemistry and purity of filler. The inherent thick nature of PSF generated sponge-like shape while the instantaneous demixing process produced finger-like pore networks in HA/PSF-based asymmetric membranes as exhibited by scanning electron microscope (SEM) micrographs. The FTIR spectra confirmed noncovalent weak attractions toward the polymer surface. The leaching ratio was evaluated to observe the dispersion behavior of HA filler in membrane composition. Hydrophilicity, pore profile, pure water permeation (PWP) flux, and molecular weight cutoff (MWCO) values of all formulated membranes were also calculated. Antifouling results revealed that HA modified PSF membranes exhibited 43% less adhesion of bovine serum albumin (BSA) together with >86% recovery of flux. Membrane composition showed 74% total resistance, out of which 60% was reversible resistance. Biocompatibility evaluation revealed that the modified membranes exhibited prothrombin time (PT), and thrombin time (TT) comparable with typical blood plasma, whereas proliferation of living cells over membrane surface proved its nontoxic behavior toward biomedical application. The urea and creatinine showed effective adsorption aptitude toward HA loaded PSF membranes.


Subject(s)
Durapatite/chemistry , Membranes, Artificial , Polymers/chemistry , Sulfones/chemistry , Animals , Creatinine/chemistry , Humans , Materials Testing , Mice , NIH 3T3 Cells , Renal Dialysis/instrumentation , Urea/chemistry
4.
Artif Organs ; 45(8): E265-E279, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33559192

ABSTRACT

Carbonate apatite/hydroxyapatite (CO3Ap/HAP) additive was obtained by calcination of wasted chicken bones at 900°C. Intermolecular attraction exists between CO3Ap/HAP additive and blended polysulfone (PSF) polymer. Electron dispersive X-ray (EDX) and FTIR analysis were carried out to check the elemental composition and bonding chemistry of prepared additive. The instantaneous demixing process generated consistent finger-like networks in CO3Ap/HAP/PSF-based composite membranes while sponge-like structure was shown by PSF as revealed by SEM images. The increase in weight % of additive loading is also confirmed by EDX analysis. Furthermore, the interaction mechanism of CO3Ap/HAP additive with polysulfone medium was analyzed by FTIR exploration. The water absorption experiment defined a 93% expansion in hydrophilic performance. Change in porosity occurs with additive loading and pure water permeation flux improved up to 11 times. Approximately, antifouling results revealed that 87% of water flux was recovered after treating with a protein solution, whereas a 30% improvement in antifouling capability in case of bovine serum albumin solution occurred. In vitro cytotoxicity, and clotting times study was carried out to evaluate virulent behavior and anticoagulation activity of formulated membranes.


Subject(s)
Biocompatible Materials/chemical synthesis , Membranes, Artificial , Renal Dialysis/instrumentation , Animals , Apatites/chemistry , Chickens , Durapatite/chemistry , Equipment Design , Microscopy, Electron, Scanning , Molecular Structure , Polymers/chemistry , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...