Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 255: 128121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984579

ABSTRACT

Material is an inseparable entity for humans to serve different purposes. However, synthetic polymers represent a major category of anthropogenic pollutants with detrimental impacts on natural ecosystems. This escalating environmental issue is characterized by the accumulation of non-biodegradable plastic materials, which pose serious threats to the health of our planet's ecosystem. Cellulose is becoming a focal point for many researchers due to its high availability. It has been used to serve various purposes. Recent scientific advancements have unveiled innovative prospects for the utilization of nanocellulose within the area of advanced science. This comprehensive review investigates deeply into the field of nanocellulose, explaining the methodologies employed in separating nanocellulose from cellulose. It also explains upon two intricately examined applications that emphasize the pivotal role of nanocellulose in nanocomposites. The initial instance pertains to the automotive sector, encompassing cutting-edge applications in electric vehicle (EV) batteries, while the second exemplifies the use of nanocellulose in the field of biomedical applications like otorhinolaryngology, ophthalmology, and wound dressing. This review aims to provide comprehensive information starting from the definitions, identifying the sources of the nanocellulose and its extraction, and ending with the recent applications in the emerging field such as energy storage and biomedical applications.


Subject(s)
Ecosystem , Nanocomposites , Humans , Cellulose , Polymers
2.
Int J Biol Macromol ; 250: 126295, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37573912

ABSTRACT

This study is focused on developing and enhancing the properties of durian peel fiber (DPF) reinforced thermoplastic cassava starch (TPCS) composites. The proposed DPF was extracted from agro-waste and incorporated into TPCS with various contents of DPF (10, 20, 30, 40, and 50 wt%) via compression molding. The mechanical and thermal characteristics of the fabricated composites were studied. The thermal properties of the biocomposite were improved with the addition of DPF, as evidenced by an increase in the material's thermal stability and indicated by a higher onset decomposition temperature. The integration of DPF into TPCS improved the biodegradation rate process of the composites. Besides, the results indicated that incorporating DPF in TPCS composites enhanced tensile and flexural properties, with a 40 wt% DPF content exhibited the highest modulus and strength. The tensile and flexural strengths of TPCS/DPF composites were raised significantly from 2.96 to 21.89 MPa and 2.5 to 35.0 MPa, respectively, compared to the control TPCS sample, as DPF increased from 0 to 40 wt%. This finding was consistent with Fourier-Transform Infrared (FT-IR) spectroscopy and scanning electron micrograph (SEM), which showed good interaction between DPF and TPCS matrix. The analysis revealed that DPF at a 40 wt% ratio was the best composition compared to the other ratio. Finally, based on improved results, DPF was identified as a potential resource of green reinforcement for the biodegradable TPCS matrix.

3.
Materials (Basel) ; 16(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570032

ABSTRACT

This paper presents an experimental and numerical investigation of pultruded composite glass fibre-reinforced polymer (pGFRP) cross-arms subjected to flexural creep behaviour to assess their performance and sustainability in composite cross-arm structure applications. The primary objective of this study was to investigate the failure creep behaviour of pGFRP cross-arms with different stacking sequences. Specifically, the study aimed to understand the variations in strain rate exhibited during different stages of the creep process. Therefore, this study emphasizes a simplified approach within the experiment, numerical analysis, and mathematical modelling of three different pGFRP composites to estimate the stiffness reduction factors that determine the prediction of failure. The findings show that Findley's power law and the Burger model projected very different strains and diverged noticeably outside the testing period. Findley's model estimated a minimal increase in total strain over 50 years, while the Burger model anticipated PS-1 and PS-2 composites would fail within about 11 and 33 years, respectively. The Burger model's forecasts might be more reasonable due to the harsh environment the cross-arms are expected to withstand. The endurance and long-term performance of composite materials used in overhead power transmission lines may be predicted mathematically, and this insight into material property factors can help with design and maintenance.

SELECTION OF CITATIONS
SEARCH DETAIL
...