Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 37(11): 2051-62, 1998 Apr 10.
Article in English | MEDLINE | ID: mdl-18273124

ABSTRACT

Previously [Appl. Opt. 36, p. 9212 (1997)] we examined the performance of the linear and nonlinear preprocessed difference-of-Gaussians filter, and it was shown that this operation results in greater tolerance to in-class variations while maintaining excellent discrimination ability. The introduction of nonlinearity was shown to provide greater robustness to the filter's response to noise and background clutter in the input scene. We incorporate this new operation into the synthesis of a modified synthetic discriminant function filter. The filter is shown to produce sharp peaks, excellent discrimination without the need to include out-of-class objects, and good invariance to out-of-plane rotation over a distortion range of up to 90 degrees . Additionally, the introduction of nonlinearity is shown to provide greater robustness of the filter response to background clutter in the input scene.

2.
Appl Opt ; 36(35): 9212-24, 1997 Dec 10.
Article in English | MEDLINE | ID: mdl-18264480

ABSTRACT

A useful filter for pattern recognition must strike a compromise between the conflicting requirements of in-class distortion tolerance and out-of-class discrimination. Such a filter will be bandpass in nature, the high-frequency response being attenuated to provide less sensitivity to in-class variations, while the low frequencies must be removed, since they compromise the discrimination ability of the filter. A convenient bandpass is the difference of Gaussian (DOG) function, which provides a close approximation to the Laplacian of Gaussian. We describe the effect of a preprocessing operation applied to a DOG filtered image. This operation is shown to result in greater tolerance to in-class variation while maintaining an excellent discrimination ability. Additionally, the introduction of nonlinearity is shown to provide greater robustness in the filter response to noise and background clutter in the input scene.

SELECTION OF CITATIONS
SEARCH DETAIL
...