Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35447717

ABSTRACT

Traveling with children with autism can be very challenging for parents due to their reactions to sensory stimuli resulting in behavioral problems, which lead to self-injury and danger for themselves and others. Deep pressure was reported to have a calming effect on people with autism. This study was designed to investigate the physiological effect of deep pressure, which is an autism hug machine portable seat (AHMPS) in children with autism spectrum disorders (ASD) in public transportation settings. The study was conducted with 20 children with ASD (16 boys and 4 girls) at the Semarang Public Special School with an age ranging from 4 to 13 years (mean 10.9 ± 2.26 years), who were randomly assigned into two groups. The experiment consisted of group I who used the AHMPS inflatable wraps model and group II who used the AHMPS manual pull model. Heart rate (HR) and skin conductance (SC) were analyzed to measure the physiological calming effect using pulse oximeter oximetry and a galvanic skin response (GSR) sensor. Heart rate was significantly decreased during the treatment compared to the baseline (pre-test) session in group I (inflating wrap model) with p = 0.019, while no change of heart rate variability (HRV) was found in group II (manual pull model) with p = 0.111. There was no remaining effect of deep pressure using the HRV indicator after the treatment in both groups (group I with p = 0.159 and group II with p = 0.566). GSR captured the significant decrease in skin conductance during the treatment with p < 0.0001 in group I, but no significant decrease was recorded in group II with p = 0.062. A skin conductance indicator captured the remaining effect of deep pressure (after the treatment); it was better in group I (p = 0.003) than in group II (p = 0.773). In conclusion, the deep pressure of the AHMPS inflating wrap decreases physiological arousal in children with ASD during traveling.

2.
Heliyon ; 6(3): e03533, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32215325

ABSTRACT

This work reports a stirred-batch lab crystallization to examine the influence of maleic acid (HO 2 CCHCHCO 2 H), and temperatures (30 and 40 °C) on crystallization kinetics and morphology of struvite. The crystallization was followed by measuring the pH change up to 70 min. The pH decreased drastically for the first 5 min of the run, then started to tail off. It was found that the crystallization rate constants range from 1.608 to 6.534 per hour, which agrees with the most published value. Higher maleic acid concentrations resulted in greater growth retardation; the highest retardation was 74.21%, which was achieved for 30 °C with 20.00 ppm maleic acid. SEM imaging of the obtained precipitates showed irregular prismatic morphology, and the associated EDX confirmed that the precipitates were struvite (MgNH 4 PO 4 ⋅6H 2 O). As checked through XRD, the crystalline nature of the struvite was further confirmed, and that co-precipitation of struvite with struvite-K was observed. The co-precipitation was the result of K + adsorption onto the crystal surface. Temperatures had less influence on struvite crystallization. At 40 o C and 20.00 ppm the rate constant was 1.332 per hour; whereas at 30 o C and 0.00 ppm) the corresponding was 1.776 per hour, indicating the retardation of about 25%. Thus, the temperature effect is only 1/3 of the maleic acid effect. The current findings suggest that the presence of maleic acid can be used to elucidate the mechanism of crystallization as well as the crystalline phase transformation of struvite. In practical terms, maleic acid could be potential as a scale inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...