Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732417

ABSTRACT

This study aimed to investigate the impact of cold stress and priming on photosynthesis in the early development of maize and soybean, crops with diverse photosynthetic pathways. The main objectives were to determine the effect of cold stress on chlorophyll a fluorescence parameters and spectral reflectance indices, to determine the effect of cold stress priming and possible stress memory and to determine the relationship between different parameters used in determining the stress response. Fourteen maize inbred lines and twelve soybean cultivars were subjected to control, cold stress, and priming followed by cold stress in a walk-in growth chamber. Measurements were conducted using a portable fluorometer and a handheld reflectance instrument. Cold stress induced an overall downregulation of PSII-related specific energy fluxes and efficiencies, the inactivation of RCs resulting in higher energy dissipation, and electron transport chain impairment in both crops. Spectral reflectance indices suggested cold stress resulted in pigment differences between crops. The effect of priming was more pronounced in maize than in soybean with mostly a cumulatively negative effect. However, priming stabilized the electron trapping efficiency and upregulated the electron transfer system in maize, indicating an adaptive response. Overall, this comprehensive analysis provides insights into the complex physiological responses of maize and soybean to cold stress, emphasizing the need for further genotype-specific cold stress response and priming effect research.

2.
Plants (Basel) ; 12(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37836193

ABSTRACT

Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), ß-cryptoxanthin (ßCX), α-carotene (αC), and ß-carotene (ßC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content. Highly significant variability among the 88 accessions was detected for all carotenoids. On average, the most abundant carotenoid was LUT with 13.2 µg g-1 followed by ZEA with 6.8 µg g-1 dry matter. A Principal Component Analysis revealed a clear distinction between α- (LUT, αCX, and αC) and ß-branch (ZEA; ßCX, and ßC) carotenoids. ß-branch carotenoids were positively correlated with kernel color, and weakly positively associated with kernel hardness. Our results suggest that some genebank accessions with a certain percentage of native germplasm may be a good source of carotenoid biofortification in Southeast Europe. However, due to the lack of association between LUT and ZEA, the breeding process could be cumbersome.

3.
BMC Plant Biol ; 23(1): 315, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316827

ABSTRACT

Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.


Subject(s)
Genetic Variation , Plant Breeding , Zea mays , Alleles , Europe , Zea mays/genetics
4.
Plants (Basel) ; 9(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093233

ABSTRACT

BACKGROUND: The seedling stage has received little attention in maize breeding to identify genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight (expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at seedling stage. METHODS: 109 genotyped-by-sequencing (GBS) elite maize inbreds were phenotyped for HKW and planted in controlled conditions (16/8 day/night, 25 °C, 50% RH, 200 µMol/m2/s) in trays filled with soil. Plants in control (C) were watered every two days, while watering was stopped for 10 days in water withholding (WW). Fresh weight (FW), dry weight (DW), and dry matter content (DMC) were measured. RESULTS: Adding HKW as a covariate increased the power of detection of associations in FW and DW by 44% and increased genomic prediction accuracy in C and decreased in WW. CONCLUSIONS: Seed weight was effectively incorporated into association studies for biomass traits in maize seedlings, whereas the incorporation into genomic predictions, particularly in water-stressed plants, was not worthwhile.

5.
Front Plant Sci ; 10: 566, 2019.
Article in English | MEDLINE | ID: mdl-31114604

ABSTRACT

Chlorophyll fluorescence (ChlF) parameters are reliable early stress indicators in crops, but their relations with yield are still not clear. The aims of this study are to examine genetic correlations between photosynthetic performance of JIP-test during flowering and grain yield (GY) in maize grown under two heat scenarios in the field environments applying quantitative genetic analysis, and to compare efficiencies of indirect selection for GY through ChlF parameters and genomic selection for GY. The testcrosses of 221 intermated recombinant inbred lines (IRILs) of the IBM Syn4 population were evaluated in six environments at two geographically distinctive locations in 3 years. According to day/night temperatures and vapor pressure deficit (VPD), the two locations in Croatia and Turkey may be categorized to the mild heat and moderate heat scenarios, respectively. Mild heat scenario is characterized by daytime temperatures often exceeding 33°C and night temperatures lower than 20°C while in moderate heat scenario the daytime temperatures often exceeded 33°C and night temperatures were above 20°C. The most discernible differences among the scenarios were obtained for efficiency of electron transport beyond quinone A (QA) [ET/(TR-ET)], performance index on absorption basis (PIABS) and GY. Under the moderate heat scenario, there were tight positive genetic correlations between ET/(TR-ET) and GY (0.73), as well as between PIABS and GY (0.59). Associations between the traits were noticeably weaker under the mild heat scenario. Analysis of quantitative trait loci (QTL) revealed several common QTLs for photosynthetic and yield performance under the moderate heat scenario corroborating pleiotropy. Although the indirect selection with ChlF parameters is less efficient than direct selection, ET/(TR-ET) and PIABS could be efficient secondary breeding traits for selection under moderate heat stress since they seem to be genetically correlated with GY in the stressed environments and not associated with yield performance under non-stressed conditions predicting GY during flowering. Indirect selection through PIABS was also shown to be more efficient than genomic selection in moderate heat scenario.

6.
J Hered ; 103(1): 47-54, 2012.
Article in English | MEDLINE | ID: mdl-22071312

ABSTRACT

Detecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years. The population was mapped using sets of 121 polymorphic markers. QTL analysis revealed 32 significant QTLs detected for 7 traits, of which some were colocalized. The Additive-dominant model revealed highly significant additive effects, suggesting that biofortification traits in maize are generally controlled by numerous small-effect QTLs. Three QTLs for Fe/P, Zn/P, and Mg/P were colocalized on chromosome 3, coinciding with simple sequence repeats marker bnlg1456, which resides in close proximity to previously identified phytase genes (ZM phys1 and phys2). Thus, we recommend the ratios as bioavailability traits in biofortification research.


Subject(s)
Edible Grain/genetics , Quantitative Trait Loci , Trace Elements/metabolism , Zea mays/genetics , 6-Phytase/genetics , Chromosome Mapping , Edible Grain/metabolism , Iron/metabolism , Lod Score , Magnesium/metabolism , Microsatellite Repeats , Phenotype , Phosphorus/metabolism , Phytic Acid/metabolism , Zea mays/metabolism , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...