Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20232959

ABSTRACT

The COVID-19 pandemic, within a short time span, has had a significant impact on every aspect of life in almost every country on the planet. As it evolved from a local epidemic isolated to certain regions of China, to the deadliest pandemic since the influenza outbreak of 1918, scientists all over the world have only amplified their efforts to combat it. In that battle, Artificial Intelligence, or AI, with its wide ranging capabilities and versatility, has played a vital role and thus has had a sizable impact. In this review, we present a comprehensive analysis of the use of AI techniques for spatio-temporal modeling and forecasting and impact modeling on diverse populations as it relates to COVID-19. Furthermore, we catalogue the articles in these areas based on spatio-temporal modeling, intrinsic parameters, extrinsic parameters, dynamic parameters and multivariate inputs (to ascertain the penetration of AI usage in each sub area). The manner in which AI is used and the associated techniques utilized vary for each body of work. Majority of articles use deep learning models, compartment models, stochastic methods and numerous statistical methods. We conclude by listing potential paths of research for which AI based techniques can be used for greater impact in tackling the pandemic.

2.
Sensors (Basel) ; 10(3): 1447-72, 2010.
Article in English | MEDLINE | ID: mdl-22294881

ABSTRACT

Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.


Subject(s)
Computer Security , Telemetry , Algorithms , Computer Communication Networks , Geography , Humans , Models, Theoretical
3.
Sensors (Basel) ; 9(8): 5989-6007, 2009.
Article in English | MEDLINE | ID: mdl-22454568

ABSTRACT

Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...