Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37835520

ABSTRACT

The ability to detect several types of cancer using a non-invasive, blood-based test holds the potential to revolutionize oncology screening. We mined tumor methylation array data from the Cancer Genome Atlas (TCGA) covering 14 cancer types and identified two novel, broadly-occurring methylation markers at TLX1 and GALR1. To evaluate their performance as a generalized blood-based screening approach, along with our previously reported methylation biomarker, ZNF154, we rigorously assessed each marker individually or combined. Utilizing TCGA methylation data and applying logistic regression models within each individual cancer type, we found that the three-marker combination significantly increased the average area under the ROC curve (AUC) across the 14 tumor types compared to single markers (p = 1.158 × 10-10; Friedman test). Furthermore, we simulated dilutions of tumor DNA into healthy blood cell DNA and demonstrated increased AUC of combined markers across all dilution levels. Finally, we evaluated assay performance in bisulfite sequenced DNA from patient tumors and plasma, including early-stage samples. When combining all three markers, the assay correctly identified nine out of nine lung cancer plasma samples. In patient plasma from hepatocellular carcinoma, ZNF154 alone yielded the highest combined sensitivity and specificity values averaging 68% and 72%, whereas multiple markers could achieve higher sensitivity or specificity, but not both. Altogether, this study presents a comprehensive pipeline for the identification, testing, and validation of multi-cancer methylation biomarkers with a considerable potential for detecting a broad range of cancer types in patient blood samples.

2.
Genetics ; 208(3): 937-949, 2018 03.
Article in English | MEDLINE | ID: mdl-29284660

ABSTRACT

To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Databases, Genetic , Drosophila/genetics , Drosophila/metabolism , Genome-Wide Association Study , Transcription Factors/metabolism , Animals , Binding Sites , Chromatin Immunoprecipitation , Genome-Wide Association Study/methods , Models, Biological , Nucleotide Motifs , Protein Binding
3.
J Mol Diagn ; 18(2): 283-98, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26857064

ABSTRACT

Sites that display recurrent, aberrant DNA methylation in cancer represent potential biomarkers for screening and diagnostics. Previously, we identified hypermethylation at the ZNF154 CpG island in 15 solid epithelial tumor types from 13 different organs. In this study, we measure the magnitude and pattern of differential methylation of this region across colon, lung, breast, stomach, and endometrial tumor samples using next-generation bisulfite amplicon sequencing. We found that all tumor types and subtypes are hypermethylated at this locus compared with normal tissue. To evaluate this site as a possible pan-cancer marker, we compare the ability of several sequence analysis methods to distinguish the five tumor types (184 tumor samples) from normal tissue samples (n = 34). The classification performance for the strongest method, measured by the area under (the receiver operating characteristic) curve (AUC), is 0.96, close to a perfect value of 1. Furthermore, in a computational simulation of circulating tumor DNA, we were able to detect limited amounts of tumor DNA diluted with normal DNA: 1% tumor DNA in 99% normal DNA yields AUCs of up to 0.79. Our findings suggest that hypermethylation of the ZNF154 CpG island is a relevant biomarker for identifying solid tumor DNA and may have utility as a generalizable biomarker for circulating tumor DNA.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , DNA, Neoplasm/blood , Kruppel-Like Transcription Factors/blood , Kruppel-Like Transcription Factors/genetics , Neoplasms/genetics , Biomarkers, Tumor/blood , Computer Simulation , CpG Islands , Endometrial Neoplasms/genetics , Female , Humans , Nucleic Acid Amplification Techniques/methods , ROC Curve , Reproducibility of Results , Sulfites/chemistry
4.
Genome Res ; 24(7): 1224-35, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24985916

ABSTRACT

Annotation of regulatory elements and identification of the transcription-related factors (TRFs) targeting these elements are key steps in understanding how cells interpret their genetic blueprint and their environment during development, and how that process goes awry in the case of disease. One goal of the modENCODE (model organism ENCyclopedia of DNA Elements) Project is to survey a diverse sampling of TRFs, both DNA-binding and non-DNA-binding factors, to provide a framework for the subsequent study of the mechanisms by which transcriptional regulators target the genome. Here we provide an updated map of the Drosophila melanogaster regulatory genome based on the location of 84 TRFs at various stages of development. This regulatory map reveals a variety of genomic targeting patterns, including factors with strong preferences toward proximal promoter binding, factors that target intergenic and intronic DNA, and factors with distinct chromatin state preferences. The data also highlight the stringency of the Polycomb regulatory network, and show association of the Trithorax-like (Trl) protein with hotspots of DNA binding throughout development. Furthermore, the data identify more than 5800 instances in which TRFs target DNA regions with demonstrated enhancer activity. Regions of high TRF co-occupancy are more likely to be associated with open enhancers used across cell types, while lower TRF occupancy regions are associated with complex enhancers that are also regulated at the epigenetic level. Together these data serve as a resource for the research community in the continued effort to dissect transcriptional regulatory mechanisms directing Drosophila development.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation , Genome, Insect , Transcription Factors , Transcription, Genetic , Animals , Base Sequence , Binding Sites , Chromatin/genetics , Chromatin/metabolism , Cluster Analysis , Computational Biology/methods , Enhancer Elements, Genetic , Gene Expression Profiling , Genomics/methods , Nucleotide Motifs , Protein Binding , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...