Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
3.
Front Mol Neurosci ; 12: 172, 2019.
Article in English | MEDLINE | ID: mdl-31354428

ABSTRACT

Introduction: In-vivo quantification of the serotonin transporter (SERT) guided our understanding of many neuropsychiatric disorders. A recently introduced bolus plus constant infusion protocol has been shown to allow the reliable determination of SERT binding with reduced scan time. In this work, the outcomes of two methods, a bolus injection paradigm on a GE PET camera, and a bolus plus infusion paradigm on a combined Siemens PET/MR camera were compared. Methods: A total of seven healthy subjects underwent paired PET and paired PET/MR scans each with intravenous double-blind application of 7.5 mg citalopram or saline in a randomized cross-over study design. While PET scans were performed according to standard protocols and non-displaceable binding potentials (BPND) were calculated using the multi-linear reference tissue model, during PET/MR measurements [11C]DASB was applied as bolus plus constant infusion, and BPND was calculated using the steady state method and data acquired at tracer equilibrium. Occupancies were calculated as the relative decrease in BPND between saline and citalopram scans. Results: During placebo scans, a mean difference in BPND of -0.08 (-11.71%) across all ROIs was found between methods. PET/MR scans resulted in higher BPND estimates than PET scans in all ROIs except the midbrain. A mean difference of -0.19 (-109.40%) across all ROIs between methods was observed for citalopram scans. PET/MR scans resulted in higher BPND estimates than PET scans in all ROIs. For occupancy, a mean difference of 23.12% (21.91%) was observed across all ROIs. PET/MR scans resulted in lower occupancy compared to PET scans in all ROIs except the temporal cortex. While for placebo, BPND of high-binding regions (thalamus and striatum) exhibited moderate reliability (ICC = 0.66), during citalopram scans ICC decreased (0.36-0.46). However, reliability for occupancy remained high (0.57-0.82). Conclusion: Here, we demonstrated the feasibility of reliable and non-invasive SERT quantification using a [11C]DASB bolus plus constant infusion protocol at a hybrid PET/MR scanner, which might facilitate future pharmacological imaging studies. Highest agreement with established methods for quantification of occupancy and SERT BPND at baseline was observed in subcortical high-binding regions.

4.
Transl Psychiatry ; 9(1): 5, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30664620

ABSTRACT

Alterations of the 5-HT1A receptor and BDNF have consistently been associated with affective disorders. Two functional single nucleotide polymorphisms (SNPs), rs6295 of the serotonin 1A receptor gene (HTR1A) and rs6265 of brain-derived neurotrophic factor gene (BDNF), may impact transcriptional regulation and expression of the 5-HT1A receptor. Here we investigated interaction effects of rs6295 and rs6265 on 5-HT1A receptor binding. Forty-six healthy subjects were scanned with PET using the radioligand [carbonyl-11C]WAY-100635. Genotyping was performed for rs6265 and rs6295. Subjects showing a genotype with at least three risk alleles (G of rs6295 or A of rs6265) were compared to control genotypes. Cortical surface binding potential (BPND) was computed for 32 cortical regions of interest (ROI). Mixed model was applied to study main and interaction effects of ROI and genotype. ANOVA was used for post hoc analyses. Individuals with the risk genotypes exhibited an increase in 5-HT1A receptor binding by an average of 17% (mean BPND 3.56 ± 0.74 vs. 2.96 ± 0.88). Mixed model produced an interaction effect of ROI and genotype on BPND and differences could be demonstrated in 10 ROI post hoc. The combination of disadvantageous allelic expression of rs6295 and rs6265 may result in a 5-HT1A receptor profile comparable to affective disorders as increased 5-HT1A receptor binding is a well published phenotype of depression. Thus, epistasis between BDNF and HTR1A may contribute to the multifactorial risk for affective disorders and our results strongly advocate further research on this genetic signature in affective disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Depressive Disorder/genetics , Epistasis, Genetic , Receptor, Serotonin, 5-HT1A/metabolism , Adult , Alleles , Brain/diagnostic imaging , Brain-Derived Neurotrophic Factor/genetics , Cross-Sectional Studies , Female , Genotype , Healthy Volunteers , Humans , Male , Middle Aged , Piperazines/metabolism , Polymorphism, Single Nucleotide , Positron-Emission Tomography , Pyridines/metabolism , Receptor, Serotonin, 5-HT1A/genetics
5.
Brain Stimul ; 12(3): 714-723, 2019.
Article in English | MEDLINE | ID: mdl-30635228

ABSTRACT

BACKGROUND: Electroconvulsive therapy (ECT) constitutes one of the most effective antidepressant treatment strategies in major depression (MDD). Despite its common use and uncontested efficacy, its mechanism of action is still insufficiently understood. Previously, we showed that ECT is accompanied by a global decrease of serotonin-1A receptors in MDD; however, further studies to investigate the involvement of the serotonergic system in the mechanism of action of ECT are warranted. The monoamine oxidase A (MAO-A) represents an important target for antidepressant treatments and was found to be increased in MDD. Here, we investigated whether ECT impacts on MAO-A levels in treatment-resistant patients (TRD). METHODS: 16 TRD patients (12 female, age 45.94 ±â€¯9.68 years, HAMD 25.12 ±â€¯3.16) with unipolar depression according to DSM-IV were scanned twice before (PET1 and PET2, to assess test-retest variability under constant psychopharmacotherapy) and once after (PET3) completing a minimum of eight unilateral ECT sessions using positron emission tomography and the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT). Age- and sex-matched healthy subjects (HC) were measured once. RESULTS: Response rate to ECT was 87.5%. MAO-A VT was found to be significantly reduced after ECT in TRD patients (-3.8%) when assessed in 27 a priori defined ROIs (p < 0.001). Test-retest variability between PET1 and PET2 was 3.1%. MAO-A VT did not significantly differ between TRD patients and HC at baseline. CONCLUSIONS: The small effect size of the significant reduction of MAO-A VT after ECT in the range of test-retest variability does not support the hypothesis of a clinically relevant mechanism of action of ECT based on MAO-A. Furthermore, in contrast to studies reporting elevated MAO-A VT in unmedicated depressed patients, MAO-A levels were found to be similar in TRD patients and HC which might be attributed to the continuous antidepressant pharmacotherapy in the present sample.


Subject(s)
Brain/diagnostic imaging , Depressive Disorder, Treatment-Resistant/therapy , Electroconvulsive Therapy/adverse effects , Monoamine Oxidase/metabolism , Adult , Brain/metabolism , Brain/physiopathology , Electroconvulsive Therapy/methods , Female , Humans , Male , Middle Aged , Positron-Emission Tomography
6.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30357321

ABSTRACT

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Subject(s)
Cerebral Cortex/metabolism , Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Middle Aged , Molecular Imaging/methods , Serotonin/metabolism , Young Adult
7.
Transl Psychiatry ; 8(1): 198, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242221

ABSTRACT

Increased cerebral monoamine oxidase A (MAO-A) levels have been shown in non-seasonal depression using positron emission tomography (PET). Seasonal affective disorder (SAD) is a sub-form of major depressive disorder and is typically treated with bright light therapy (BLT). The serotonergic system is affected by season and light. Hence, this study aims to assess the relevance of brain MAO-A levels to the pathophysiology and treatment of SAD. Changes to cerebral MAO-A distribution (1) in SAD in comparison to healthy controls (HC), (2) after treatment with BLT and (3) between the seasons, were investigated in 24 patients with SAD and 27 HC using [11C]harmine PET. PET scans were performed in fall/winter before and after 3 weeks of placebo-controlled BLT, as well as in spring/summer. Cerebral MAO-A distribution volume (VT, an index of MAO-A density) did not differ between patients and HC at any of the three time-points. However, MAO-A VT decreased from fall/winter to spring/summer in the HC group (F1, 187.84 = 4.79, p < 0.050), while SAD showed no change. In addition, BLT, but not placebo, resulted in a significant reduction in MAO-A VT (F1, 208.92 = 25.96, p < 0.001). This is the first study to demonstrate an influence of BLT on human cerebral MAO-A levels in vivo. Furthermore, we show that SAD may lack seasonal dynamics in brain MAO-A levels. The lack of a cross-sectional difference between patients and HC, in contrast to studies in non-seasonal depression, may be due to the milder symptoms typically shown by patients with SAD.


Subject(s)
Brain/metabolism , Monoamine Oxidase/metabolism , Phototherapy , Seasonal Affective Disorder/metabolism , Seasonal Affective Disorder/therapy , Adult , Brain/physiopathology , Carbon Radioisotopes , Female , Harmine , Humans , Male , Positron-Emission Tomography , Treatment Outcome
8.
Int J Neuropsychopharmacol ; 21(2): 145-153, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29045739

ABSTRACT

Background: Comprehensive description of ketamine's molecular binding profile becomes increasingly pressing as use in real-life patient cohorts widens. Animal studies attribute a significant role in the substance's antidepressant effects to the serotonergic system. The serotonin transporter is a highly relevant target in this context, because it is central to depressive pathophysiology and treatment. This is, to our knowledge, the first study investigating ketamine's serotonin transporter binding in vivo in humans. Methods: Twelve healthy subjects were assessed twice using [11C]DASB positron emission tomography. A total of 0.50 mg/kg bodyweight ketamine was administered once i.v. prior to the second positron emission tomography scan. Ketamine plasma levels were determined during positron emission tomography. Serotonin transporter nondisplaceable binding potential was computed using a reference region model, and occupancy was calculated for 4 serotonin transporter-rich regions (caudate, putamen, thalamus, midbrain) and a whole-brain region of interest. Results: After administration of the routine antidepressant dose, ketamine showed <10% occupancy of the serotonin transporter, which is within the test-retest variability of [11C]DASB. A positive correlation between ketamine plasma levels and occupancy was shown. Conclusions: Measurable occupancy of the serotonin transporter was not detectable after administration of an antidepressant dose of ketamine. This might suggest that ketamine binding of the serotonin transporter is unlikely to be a primary antidepressant mechanism at routine antidepressant doses, as substances that facilitate antidepressant effects via serotonin transporter binding (e.g., selective serotonin reuptake inhibitors) show 70% to 80% occupancy. Administration of high-dose ketamine is widening. Based on the positive relationship we find between ketamine plasma levels and occupancy, there is a need for investigation of ketamine's serotonin transporter binding at higher doses.


Subject(s)
Aniline Compounds , Antidepressive Agents/pharmacokinetics , Ketamine/pharmacokinetics , Mesencephalon/drug effects , Neostriatum/drug effects , Positron-Emission Tomography/methods , Serotonin Agents , Serotonin Plasma Membrane Transport Proteins/drug effects , Sulfides , Thalamus/drug effects , Adult , Antidepressive Agents/administration & dosage , Humans , Ketamine/administration & dosage , Male , Mesencephalon/diagnostic imaging , Neostriatum/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
9.
Front Hum Neurosci ; 11: 48, 2017.
Article in English | MEDLINE | ID: mdl-28220069

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) modulate serotonergic neurotransmission by blocking reuptake of serotonin from the extracellular space. Up to now, it remains unclear how SSRIs achieve their antidepressant effect. However, task-based and resting state functional magnetic resonance imaging studies, have demonstrated connectivity changes between brain regions. Here, we use positron emission tomography (PET) to quantify SSRI's main target, the serotonin transporter (SERT), and assess treatment-induced molecular changes in the interregional relation of SERT binding potential (BPND). Nineteen out-patients with major depressive disorder (MDD) and 19 healthy controls (HC) were included in this study. Patients underwent three PET measurements with the radioligand [11C]DASB: (1) at baseline, (2) after a first SSRI dose; and (3) following at least 3 weeks of daily intake. Controls were measured once with PET. Correlation analyses were restricted to brain regions repeatedly implicated in MDD pathophysiology. After 3 weeks of daily SSRI administration a significant increase in SERT BPND correlations of anterior cingulate cortex and insula with the amygdala, midbrain, hippocampus, pallidum and putamen (p < 0.05; false discovery rate, FDR corrected) was revealed. No significant differences were found when comparing MDD patients and HC at baseline. These findings are in line with the clinical observation that treatment response to SSRIs is often achieved only after a latency of several weeks. The elevated associations in interregional SERT associations may be more closely connected to clinical outcomes than regional SERT occupancy measures and could reflect a change in the regional interaction of serotonergic neurotransmission during antidepressant treatment.

10.
Hum Brain Mapp ; 38(2): 792-802, 2017 02.
Article in English | MEDLINE | ID: mdl-27770470

ABSTRACT

Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BPND ) in patients with ADHD and to assess associations of SERT BPND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [11 C]DASB. SERT BPND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BPND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BPND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R2 = 0.284, R2 = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/diagnostic imaging , Positron-Emission Tomography , Serotonin Plasma Membrane Transport Proteins/metabolism , Adult , Brain/metabolism , Case-Control Studies , Female , Humans , Linear Models , Male , Psychiatric Status Rating Scales , Young Adult
11.
J Nucl Med ; 58(4): 623-631, 2017 04.
Article in English | MEDLINE | ID: mdl-27765859

ABSTRACT

Aggregation of hyperphosphorylated tau is a major hallmark of many neurodegenerative diseases, including Alzheimer disease (AD). In vivo imaging with PET may offer important insights into pathophysiologic mechanisms, diagnosis, and disease progression. We describe different strategies for quantification of 18F-AV-1451 (T807) tau binding, including models with blood sampling and noninvasive alternatives. Methods: Fifteen subjects (4 controls, 6 AD, 3 progressive supranuclear palsy, 2 cortico basal syndrome) underwent 180-min PET with 18F-AV-1451 and arterial blood sampling. Modeling with arterial input functions included 1-, 2-, and 3-tissue-compartment models and the Logan plot. Using the cerebellum as reference region, we applied the simplified reference tissue model 2 and Logan reference plot. Finally, simplified outcome measures were calculated as ratio, with reference to cerebellar concentrations (SUV ratio [SUVR]) and SUVs. Results: Tissue compartment models were not able to describe the kinetics of 18F-AV-1451, with poor fits in 33%-53% of cortical regions and 80% in subcortical areas. In contrast, the Logan plot showed excellent fits and parameter variance (total volume of distribution SE < 5%). Compared with the 180-min arterial-based Logan model, strong agreement was obtained for the Logan reference plot also for a reduced scan time of 100 min (R2 = 0.91) and SUVR 100-120 min (R2 = 0.94), with 80-100 min already representing a reasonable compromise between duration and accuracy (R2 = 0.93). Time-activity curves and kinetic parameters were equal for cortical regions and the cerebellum in control subjects but different in the putamen. Cerebellar total volumes of distribution were higher in controls than patients. For these methods, increased cortical binding was observed for AD patients and to some extent for cortico basal syndrome, but not progressive supranuclear palsy. Conclusion: The Logan plot provided the best estimate of tau binding using arterial input functions. Assuming that the cerebellum is a valid reference region, simplified methods seem to provide robust alternatives for quantification, such as the Logan reference plot with 100-min scan time. Furthermore, SUVRs between target and cerebellar activities obtained from an 80- to 100-min static scan offer promising potential for clinical routine application.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Carbolines , Models, Biological , Positron-Emission Tomography , Aged , Carbolines/metabolism , Female , Humans , Male , tau Proteins/metabolism
12.
J Nucl Med ; 57(12): 1933-1940, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27390156

ABSTRACT

The investigation of cerebral metabolic rate of glucose (CMRGlu) at baseline and during specific tasks previously required separate scans with the drawback of high intrasubject variability. We aimed to validate a novel approach to assessing baseline glucose metabolism and task-specific changes in a single measurement with a constant infusion of 18F-FDG. METHODS: Fifteen healthy subjects underwent two PET measurements with arterial blood sampling. As a reference, baseline CMRGlu was quantified from a 60-min scan after 18F-FDG bolus application using the Patlak plot (eyes closed). For the other scan, a constant radioligand infusion was applied for 95 min, during which the subjects opened their eyes at 10-20 min and 60-70 min and tapped their right thumb to their fingers at 35-45 min and 85-95 min. The constant-infusion scan was quantified in two steps. First, the general linear model was used to fit regional time-activity curves with regressors for baseline metabolism, task-specific changes for the eyes-open and finger-tapping conditions, and movement parameters. Second, the Patlak plot was used for quantification of CMRGlu. Multiplication of the baseline regressor by ß-values from the general linear model yielded regionally specific time-activity curves for baseline metabolism. Further, task-specific changes in metabolism are directly proportional to changes in the slope of the time-activity curve and hence to changes in CMRGlu. RESULTS: Baseline CMRGlu from the constant-infusion scan matched that from the bolus application (test-retest variability, 1.1% ± 24.7%), which was not the case for a previously suggested approach (variability, -39.9% ± 25.2%, P < 0.001). Task-specific CMRGlu increased in the primary visual and motor cortices for eyes open and finger tapping, respectively (P < 0.05, familywise error-corrected), with absolute changes of up to 2.1 µmol/100 g/min and 6.3% relative to baseline. For eyes open, a decreased CMRGlu was observed in default-mode regions (P < 0.05, familywise error-corrected). CMRGlu quantified with venous blood samples (n = 6) showed excellent agreement with results obtained from arterial samples (r > 0.99). CONCLUSION: Baseline glucose metabolism and task-specific changes can be quantified in a single measurement with constant infusion of 18F-FDG and venous blood sampling. The high sensitivity and regional specificity of the approach offer novel possibilities for functional and multimodal brain imaging.


Subject(s)
Fluorodeoxyglucose F18/administration & dosage , Glucose/metabolism , Positron-Emission Tomography/methods , Adult , Brain/diagnostic imaging , Brain/metabolism , Female , Humans , Male
13.
Hum Brain Mapp ; 37(3): 884-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26678348

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/metabolism , Brain/diagnostic imaging , Brain/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Adult , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain Mapping , Cohort Studies , Female , Genotyping Techniques , Humans , Linkage Disequilibrium , Male , Morpholines , Polymorphism, Single Nucleotide , Positron-Emission Tomography , Promoter Regions, Genetic , Radiopharmaceuticals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...