Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Surg ; 221(2): 300-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26206636

ABSTRACT

BACKGROUND: Surgical management of Zollinger-Ellison syndrome (ZES) relies on localization and resection of all tumor foci. We describe the benefit of combined intraoperative use of a portable large field of view gamma camera (LFOVGC) and a handheld gamma detection probe (HGDP) for indium-111 ((111)In)-pentetreotide radioguided localization and confirmation of gastrinoma resection in ZES. STUDY DESIGN: Five patients (6 cases) with (111)In-pentetreotide-avid ZES were evaluated. Patients were injected with (111)In-pentetreotide for diagnostic imaging the day before surgery. Intraoperatively, an HGDP and LFOVGC were used to localize (111)In-pentetreotide-avid lesions, guide resection, assess specimens for (111)In-pentetreotide activity, and to verify lack of abnormal post-resection surgical field activity. RESULTS: Large field of view gamma camera imaging and HGDP-assisted detection were helpful for localization and guided resection of tumor and removal of (111)In-pentetreotide-avid tumor foci in all cases. In 3 of 5 patients (3 of 6 cases), these techniques led to detection and resection of additional tumor foci beyond those detected by standard surgical techniques. The (111)In-pentetreotide-positive or-negative specimens correlated with neuroendocrine tumors or benign pathology, respectively. In one patient with mild residual focal activity on post-resection portable LFOVGC imaging, thought to be artifact, had recurrence of disease in the same area 5 months after surgery. CONCLUSIONS: Real-time LFOVGC imaging and HGDP use for surgical management of gastrinoma improve success of localizing and resecting all neuroendocrine tumor-positive tumor foci, providing instantaneous navigational feedback. This approach holds potential for improving long-term patient outcomes in patients with ZES.


Subject(s)
Gamma Cameras , Gastrinoma/surgery , Pancreatectomy/methods , Radiopharmaceuticals , Somatostatin/analogs & derivatives , Zollinger-Ellison Syndrome/surgery , Adolescent , Adult , Aged , Female , Gastrinoma/diagnostic imaging , Humans , Male , Middle Aged , Radionuclide Imaging , Treatment Outcome , Zollinger-Ellison Syndrome/diagnostic imaging
2.
J Surg Res ; 163(1): 86-95, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20599214

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome continues to be a major source of morbidity and mortality in critically-ill patients. Heparin binding EGF-like growth factor (HB-EGF) is a biologically active protein that acts as an intestinal cytoprotective agent. We have previously demonstrated that HB-EGF protects the intestines from injury in several different animal models of intestinal injury. In the current study, we investigated the ability of HB-EGF to protect the lungs from remote organ injury after intestinal ischemia/reperfusion (I/R). METHODS: Mice were randomly assigned to one of the following groups: (1) sham-operated; (2) sham+HB-EGF (1200 microg/kg in 0.6 mL administered by intra-luminal injection at the jejuno-ileal junction immediately after identification of the superior mesenteric artery); (3) superior mesenteric artery occlusion for 45 min followed by reperfusion for 6 h (I/R); or (4) I/R+HB-EGF (1200 microg/kg in 0.6 mL) administered 15 min after vascular occlusion. The severity of acute lung injury was determined by histology, morphometric analysis and invasive pulmonary function testing. Animal survival was evaluated using Kaplan-Meier analysis. RESULTS: Mice subjected to intestinal I/R injury showed histologic and functional evidence of acute lung injury and decreased survival compared with sham-operated animals. Compared with mice treated with HB-EGF (I/R+HB-EGF), the I/R group had more severe acute lung injury, and decreased survival. CONCLUSION: Our results demonstrate that HB-EGF reduces the severity of acute lung injury after intestinal I/R in mice. These data demonstrate that HB-EGF may be a potential novel systemic anti-inflammatory agent for the prevention of the systemic inflammatory response syndrome (SIRS) after intestinal injury.


Subject(s)
Intercellular Signaling Peptides and Proteins/therapeutic use , Intestine, Small/blood supply , Lung Injury/prevention & control , Reperfusion Injury/complications , Animals , Apoptosis/drug effects , Capillary Permeability/drug effects , Heparin-binding EGF-like Growth Factor , Intercellular Signaling Peptides and Proteins/pharmacology , Lung/blood supply , Lung/drug effects , Lung Injury/etiology , Lung Injury/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Diffusing Capacity/drug effects , Respiratory Function Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...