Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Am J Ophthalmol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871269

ABSTRACT

PURPOSE: To assess the safety and efficacy of AAV5-hRKp.RPGR in participants with retinitis pigmentosa GTPase regulator (RPGR)-associated X-linked retinitis pigmentosa (XLRP). DESIGN: Open-label, phase 1/2 dose escalation/expansion study (NCT03252847). METHODS: Males (≥5 years old) with XLRP-RPGR were evaluated. In the dose escalation phase, subretinal AAV5-hRKp.RPGR (low: 1.0×1011 vg/ml; intermediate: 2.0×1011 vg/ml; high: 4.0×1011 vg/ml) was administered to the poorer-seeing eye (n = 10). Dose confirmation (intermediate dose) was carried out in 3 pediatric participants. In the dose expansion phase, 36 participants were randomized 1:1:1 to immediate (low or intermediate dose) or deferred (control) treatment. The primary outcome was safety. Secondary efficacy outcomes included static perimetry, microperimetry, vision-guided mobility, best corrected visual acuity, and contrast sensitivity. Safety and efficacy outcomes were assessed for 52 weeks for immediate treatment participants and 26 weeks for control participants. RESULTS: AAV5-hRKp.RPGR was safe and well tolerated, with no reported dose-limiting events. Most adverse events (AEs) were transient and related to the surgical procedure, resolving without intervention. Two serious AEs were reported with immediate treatment (retinal detachment, uveitis). A third serious AE (increased intraocular pressure) was reported outside the reporting period. All ocular inflammation-related AEs responded to corticosteroids. Treatment with AAV5-hRKp.RPGR resulted in improvements in retinal sensitivity and functional vision compared with the deferred group at Week 26; similar trends were observed at Week 52. CONCLUSIONS: AAV5-hRKp.RPGR demonstrated an anticipated and manageable AE profile through 52 weeks. Safety and efficacy findings support investigation in a phase 3 trial.

2.
Clocks Sleep ; 5(3): 499-506, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37754351

ABSTRACT

Standardization plays a crucial role in ensuring the reliability, reproducibility, and interoperability of research data in the biomedical sciences. Metadata standards are one foundation for the FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data management. They facilitate data discovery, understanding, and reuse. However, the adoption of metadata standards in biological research lags in practice. Barriers such as complexity, lack of incentives, technical challenges, resource constraints, and resistance to change hinder widespread adoption. In the field of chronobiology, standardization is essential but faces particular challenges due to the longitudinal nature of experimental data, diverse model organisms, and varied measurement techniques. To address these challenges, we propose an approach that emphasizes simplicity and practicality: the development of README templates tailored for particular data types and species. Through this opinion article, our intention is to initiate a dialogue and commence a community-driven standardization process by engaging potential contributors and collaborators.

3.
Am J Physiol Heart Circ Physiol ; 325(4): H790-H805, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539447

ABSTRACT

Fetal growth throughout pregnancy relies on delivery of an increasing volume of maternal blood to the placenta. To facilitate this, the uterine vascular network adapts structurally and functionally, resulting in wider blood vessels with decreased flow-mediated reactivity. Impaired remodeling of the rate-limiting uterine radial arteries has been associated with fetal growth restriction. However, the mechanisms underlying normal or pathological radial artery remodeling are poorly understood. Here, we used pressure myography to determine the roles of hemodynamic (resistance, flow rate, shear stress) and paracrine [ß-estradiol, progesterone, placental growth factor (PlGF), vascular endothelial growth factor] factors on rat radial artery reactivity. We show that ß-estradiol, progesterone, and PlGF attenuate flow-mediated constriction of radial arteries from nonpregnant rats, allowing them to withstand higher flow rates in a similar manner to pregnant vessels. This effect was partly mediated by nitric oxide (NO) production. To better understand how the combination of paracrine factors and shear stress may impact human radial artery remodeling in the first half of gestation, computational models of uterine hemodynamics, incorporating physiological parameters for trophoblast plugging and spiral artery remodeling, were used to predict shear stress in the upstream radial arteries across the first half of pregnancy. Human microvascular endothelial cells subjected to these predicted shear stresses demonstrated higher NO production when paracrine factors were added. This suggests that synergistic effects of paracrine and hemodynamic factors induce uterine vascular remodeling and that alterations in this balance could impair radial artery adaptation, limiting blood flow to the placenta and negatively impacting fetal growth.NEW & NOTEWORTHY Placenta-specific paracrine factors ß-estradiol, progesterone, and placental growth factor attenuate flow-mediated constriction of the rate-limiting uterine radial arteries, enabling higher flow rates in pregnancy. These paracrine factors induce their actions in part via nitric oxide mediated mechanisms. A synergistic combination of paracrine factors and shear stress is likely necessary to produce sufficient levels of nitric oxide during early human pregnancy to trigger adequate uterine vascular adaptation.


Subject(s)
Radial Artery , Vascular Endothelial Growth Factor A , Pregnancy , Humans , Rats , Female , Animals , Placenta Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Progesterone/pharmacology , Endothelial Cells , Nitric Oxide/metabolism , Hemodynamics , Uterine Artery/metabolism , Estradiol/pharmacology , Estradiol/metabolism
4.
BMC Biol ; 21(1): 1, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36600217

ABSTRACT

BACKGROUND: Prolonged cellular activity may overload cell function, leading to high rates of protein synthesis and accumulation of misfolded or unassembled proteins, which cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) to re-establish normal protein homeostasis. Previous molecular work has demonstrated that sleep deprivation (SD) leads to ER stress in neurons, with a number of ER-specific proteins being upregulated to maintain optimal cellular proteostasis. It is still not clear which cellular processes activated by sleep deprivation lead to ER- stress, but increased cellular metabolism, higher request for protein synthesis, and over production of oxygen radicals have been proposed as potential contributing factors. Here, we investigate the transcriptional and ultrastructural ER and mitochondrial modifications induced by sleep loss. RESULTS: We used gene expression analysis in mouse forebrains to show that SD was associated with significant transcriptional modifications of genes involved in ER stress but also in ER-mitochondria interaction, calcium homeostasis, and mitochondrial respiratory activity. Using electron microscopy, we also showed that SD was associated with a general increase in the density of ER cisternae in pyramidal neurons of the motor cortex. Moreover, ER cisternae established new contact sites with mitochondria, the so-called mitochondria associated membranes (MAMs), important hubs for molecule shuttling, such as calcium and lipids, and for the modulation of ATP production and redox state. Finally, we demonstrated that Drosophila male mutant flies (elav > linker), in which the number of MAMs had been genetically increased, showed a reduction in the amount and consolidation of sleep without alterations in the homeostatic sleep response to SD. CONCLUSIONS: We provide evidence that sleep loss induces ER stress characterized by increased crosstalk between ER and mitochondria. MAMs formation associated with SD could represent a key phenomenon for the modulation of multiple cellular processes that ensure appropriate responses to increased cell metabolism. In addition, MAMs establishment may play a role in the regulation of sleep under baseline conditions.


Subject(s)
Endoplasmic Reticulum , Mitochondria , Sleep Deprivation , Animals , Male , Mice , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Sleep Deprivation/metabolism , Drosophila
5.
Sci Rep ; 12(1): 15847, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151233

ABSTRACT

Alzheimer's disease (AD) involves pathological processing of amyloid precursor protein (APP) into amyloid-ß and microtubule associated protein Tau (MAPT) into hyperphosphorylated Tau tangles leading to neurodegeneration. Only 5% of AD cases are familial making it difficult to predict who will develop the disease thereby hindering our ability to treat the causes of the disease. A large population who almost certainly will, are those with Down syndrome (DS), who have a 90% lifetime incidence of AD. DS is caused by trisomy of chromosome 21 resulting in three copies of APP and other AD-associated genes, like dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) overexpression. This implies that DYRK1a inhibitors may have therapeutic potential for DS and AD, however It is not clear how overexpression of each of these genes contributes to the pathology of each disease as well as how effective a DYRK1A inhibitor would be at suppressing any of these. To address this knowledge gap, we used Drosophila models with human Tau, human amyloid-ß or fly DYRK1A (minibrain (mnb)) neuronal overexpression resulting in photoreceptor neuron degeneration, premature death, decreased locomotion, sleep and memory loss. DYRK1A small molecule Type 1 kinase inhibitors (DYR219 and DYR533) were effective at suppressing these disease relevant phenotypes confirming their therapeutic potential.


Subject(s)
Alzheimer Disease , Down Syndrome , Neurotoxicity Syndromes , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Down Syndrome/drug therapy , Down Syndrome/genetics , Down Syndrome/metabolism , Drosophila , Humans , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Tyrosine/metabolism , tau Proteins/metabolism , Dyrk Kinases
6.
Clin Genet ; 102(6): 494-502, 2022 12.
Article in English | MEDLINE | ID: mdl-36046955

ABSTRACT

Cerebral palsy (CP) causes neurological disability in early childhood. Hypoxic-ischaemic injury plays a major role in its aetiology, nevertheless, genetic and epigenetic factors may contribute to the clinical presentation. Mutations in ADD3 (encoding γ-adducin) gene have been described in a monogenic form of spastic quadriplegic cerebral palsy (OMIM 601568). We studied a 16-year-old male with spastic diplegia. Several investigations including neurometabolic testing, brain and spine magnetic resonance imaging (MRI) and CGH-Array were normal. Further, clinical genetics assessment and whole exome sequencing (WES) gave the diagnosis. We generated an animal model using Drosophila to study the effects of γ-adducin loss and gain of function. WES revealed a biallelic variant in the ADD3 gene, NM_016824.5(ADD3): c.1100G > A, p.(Gly367Asp). Mutations in this gene have been described as an ultra-rare autosomal recessive, which is a known form of inherited cerebral palsy. Molecular modelling suggests that this mutation leads to a loss of structural integrity of γ-adducin and is therefore expected to result in a decreased level of functional protein. Pan-neuronal over-expression or knock-down of the Drosophila ortholog of ADD3 called hts caused a reduction of life span and impaired locomotion thereby phenocopying aspects of the human disease. Our animal experiments present a starting point to understand the biological processes underpinning the clinical phenotype and pathogenic mechanisms, to gain insights into potential future methods for treating or preventing ADD3 related spastic quadriplegic cerebral palsy.


Subject(s)
Cerebral Palsy , Paraparesis, Spastic , Spastic Paraplegia, Hereditary , Animals , Male , Child, Preschool , Humans , Adolescent , Drosophila/genetics , Paraparesis, Spastic/genetics , Muscle Spasticity , Mutation , Spastic Paraplegia, Hereditary/genetics , Calmodulin-Binding Proteins/genetics
7.
Front Pharmacol ; 13: 881385, 2022.
Article in English | MEDLINE | ID: mdl-35928283

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease which is becoming increasingly prevalent due to ageing populations resulting in huge social, economic, and health costs to the community. Despite the pathological processing of genes such as Amyloid Precursor Protein (APP) into Amyloid-ß and Microtubule Associated Protein Tau (MAPT) gene, into hyperphosphorylated Tau tangles being known for decades, there remains no treatments to halt disease progression. One population with increased risk of AD are people with Down syndrome (DS), who have a 90% lifetime incidence of AD, due to trisomy of human chromosome 21 (HSA21) resulting in three copies of APP and other AD-associated genes, such as DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) overexpression. This suggests that blocking DYRK1A might have therapeutic potential. However, it is still not clear to what extent DYRK1A overexpression by itself leads to AD-like phenotypes and how these compare to Tau and Amyloid-ß mediated pathology. Likewise, it is still not known how effective a DYRK1A antagonist may be at preventing or improving any Tau, Amyloid-ß and DYRK1a mediated phenotype. To address these outstanding questions, we characterised Drosophila models with targeted overexpression of human Tau, human Amyloid-ß or the fly orthologue of DYRK1A, called minibrain (mnb). We found targeted overexpression of these AD-associated genes caused degeneration of photoreceptor neurons, shortened lifespan, as well as causing loss of locomotor performance, sleep, and memory. Treatment with the experimental DYRK1A inhibitor PST-001 decreased pathological phosphorylation of human Tau [at serine (S) 262]. PST-001 reduced degeneration caused by human Tau, Amyloid-ß or mnb lengthening lifespan as well as improving locomotion, sleep and memory loss caused by expression of these AD and DS genes. This demonstrated PST-001 effectiveness as a potential new therapeutic targeting AD and DS pathology.

8.
Neurobiol Dis ; 170: 105752, 2022 08.
Article in English | MEDLINE | ID: mdl-35569721

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease placing a great burden on people living with it, carers and society. Yet, the underlying patho-mechanisms remain unknown and treatments limited. To better understand the molecular changes associated with AD, genome-wide association studies (GWAS) have identified hundreds of candidate genes linked to the disease, like the receptor tyrosine kinase EphA1. However, demonstration of whether and how these genes cause pathology is largely lacking. Here, utilising fly genetics, we generated the first Drosophila model of human wild-type and P460L mutant EphA1 and tested the effects of Eph/ephrin signalling on AD-relevant behaviour and neurophysiology. We show that EphA1 mis-expression did not cause neurodegeneration, shorten lifespan or affect memory but flies mis-expressing the wild-type or mutant receptor were hyper-aroused, had reduced sleep, a stronger circadian rhythm and increased clock neuron activity and excitability. Over-expression of endogenous fly Eph and RNAi-mediated knock-down of Eph and its ligand ephrin affected sleep architecture and neurophysiology. Eph over-expression led to stronger circadian morning anticipation while ephrin knock-down impaired memory. A dominant negative form of the GTPase Rho1, a potential intracellular effector of Eph, led to hyper-aroused flies, memory impairment, less anticipatory behaviour and neurophysiological changes. Our results demonstrate a role of Eph/ephrin signalling in a range of behaviours affected in AD. This presents a starting point for studies into the underlying mechanisms of AD including interactions with other AD-associated genes, like Rho1, Ankyrin, Tau and APP with the potential to identify new targets for treatment.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Alzheimer Disease/genetics , Animals , Drosophila , Ephrins/genetics , Genome-Wide Association Study , Humans , Neurophysiology , Receptors, Eph Family/genetics
9.
Curr Biol ; 32(6): 1420-1428.e4, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35303416

ABSTRACT

Cation chloride cotransporters (CCCs) regulate intracellular chloride ion concentration ([Cl-]i) within neurons, which can reverse the direction of the neuronal response to the neurotransmitter GABA.1 Na+ K+ Cl- (NKCC) and K+ Cl- (KCC) cotransporters transport Cl- into or out of the cell, respectively. When NKCC activity dominates, the resulting high [Cl-]i can lead to an excitatory and depolarizing response of the neuron upon GABAA receptor opening, while KCC dominance has the opposite effect.1 This inhibitory-to-excitatory GABA switch has been linked to seasonal adaption of circadian clock function to changing day length,2-4 and its dysregulation is associated with neurodevelopmental disorders such as epilepsy.5-8 In Drosophila melanogaster, constant light normally disrupts circadian clock function and leads to arrhythmic behavior.9 Here, we demonstrate a function for CCCs in regulating Drosophila locomotor activity and GABA responses in circadian clock neurons because alteration of CCC expression in circadian clock neurons elicits rhythmic behavior in constant light. We observed the same effects after downregulation of the Wnk and Fray kinases, which modulate CCC activity in a [Cl-]i-dependent manner. Patch-clamp recordings from the large LNv clock neurons show that downregulation of KCC results in a more positive GABA reversal potential, while KCC overexpression has the opposite effect. Finally, KCC and NKCC downregulation reduces or increases morning behavioral activity during long photoperiods, respectively. In summary, our results support a model in which the regulation of [Cl-]i by a KCC/NKCC/Wnk/Fray feedback loop determines the response of clock neurons to GABA, which is important for adjusting behavioral activity to constant light and long-day conditions.


Subject(s)
Chlorides , Drosophila Proteins , Sodium-Potassium-Chloride Symporters , Symporters , Animals , Chlorides/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Locomotion , Protein Serine-Threonine Kinases , Receptors, GABA-A , Sodium-Potassium-Chloride Symporters/genetics , Sodium-Potassium-Chloride Symporters/metabolism , Symporters/genetics , Symporters/metabolism , gamma-Aminobutyric Acid , K Cl- Cotransporters
11.
Placenta ; 114: 8-13, 2021 10.
Article in English | MEDLINE | ID: mdl-34418753

ABSTRACT

Adequate development of the feto-placental circulation is critical for placental exchange function and healthy fetal growth. Understanding the structure of this circulation and how it informs fetal outcomes is important both in the human placenta, and the rodent, a purported comparative experimental model. Vascular casting and micro-CT imaging approaches enable detailed quantification of the complex vascular relationships in the feto-circulation, and provide detailed data to parameterise in silico models. Here, to assist researchers to apply these technically challenging methods we provide detailed approaches to cast and image; 1) human placentas at the cotyledon-level, and 2) whole rodent placentas.


Subject(s)
Fetus/diagnostic imaging , Placenta/diagnostic imaging , Placental Circulation , Animals , Female , Fetus/blood supply , Humans , Imaging, Three-Dimensional , Mice , Placenta/blood supply , Pregnancy , Rats
12.
STAR Protoc ; 2(2): 100598, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34169292

ABSTRACT

Bumblebees are a key pollinator. Understanding the factors that influence the timing of sleep and foraging trips is important for efficient foraging and pollination. Here, we illustrate how individual locomotor activity monitoring and colony-wide radio frequency identification tracking can be combined to analyze the effects of agrochemicals like neonicotinoids on locomotor and foraging rhythmicity and sleep quantity/quality in bumblebees. We also highlight aspects of the design that can be adapted for other invertebrates or agrochemicals, allowing broader application of these techniques. For complete details on the use and execution of this protocol, please refer to Tasman et al. (2020).


Subject(s)
Bees/physiology , Feeding Behavior , Locomotion , Motor Activity , Radio Waves , Sleep , Animals , Insecticides
13.
Front Physiol ; 12: 659440, 2021.
Article in English | MEDLINE | ID: mdl-33967830

ABSTRACT

Neonicotinoids are the most widely used insecticides in the world and are implicated in the widespread population declines of insects including pollinators. Neonicotinoids target nicotinic acetylcholine receptors which are expressed throughout the insect central nervous system, causing a wide range of sub-lethal effects on non-target insects. Here, we review the potential of the fruit fly Drosophila melanogaster to model the sub-lethal effects of neonicotinoids on pollinators, by utilizing its well-established assays that allow rapid identification and mechanistic characterization of these effects. We compare studies on the effects of neonicotinoids on lethality, reproduction, locomotion, immunity, learning, circadian rhythms and sleep in D. melanogaster and a range of pollinators. We also highlight how the genetic tools available in D. melanogaster, such as GAL4/UAS targeted transgene expression system combined with RNAi lines to any gene in the genome including the different nicotinic acetylcholine receptor subunit genes, are set to elucidate the mechanisms that underlie the sub-lethal effects of these common pesticides. We argue that studying pollinators and D. melanogaster in tandem allows rapid elucidation of mechanisms of action, which translate well from D. melanogaster to pollinators. We focus on the recent identification of novel and important sublethal effects of neonicotinoids on circadian rhythms and sleep. The comparison of effects between D. melanogaster and pollinators and the use of genetic tools to identify mechanisms make a powerful partnership for the future discovery and testing of more specific insecticides.

14.
Neurobiol Dis ; 155: 105394, 2021 07.
Article in English | MEDLINE | ID: mdl-34015490

ABSTRACT

Schizophrenia exhibits up to 80% heritability. A number of genome wide association studies (GWAS) have repeatedly shown common variants in voltage-gated calcium (Cav) channel genes CACNA1C, CACNA1I and CACNA1G have a major contribution to the risk of the disease. More recently, studies using whole exome sequencing have also found that CACNA1B (Cav2.2 N-type) deletions and rare disruptive variants in CACNA1A (Cav2.1 P/Q-type) are associated with schizophrenia. The negative symptoms of schizophrenia include behavioural defects such as impaired memory, sleep and circadian rhythms. It is not known how variants in schizophrenia-associated genes contribute to cognitive and behavioural symptoms, thus hampering the development of treatment for schizophrenia symptoms. In order to address this knowledge gap, we studied behavioural phenotypes in a number of loss of function mutants for the Drosophila ortholog of the Cav2 gene family called cacophony (cac). cac mutants showed several behavioural features including decreased night-time sleep and hyperactivity similar to those reported in human patients. The change in timing of sleep-wake cycles suggested disrupted circadian rhythms, with the loss of night-time sleep being caused by loss of cac just in the circadian clock neurons. These animals also showed a reduction in rhythmic circadian behaviour a phenotype that also could be mapped to the central clock. Furthermore, reduction of cac just in the clock resulted in a lengthening of the 24 h period. In order to understand how loss of Cav2 function may lead to cognitive deficits and underlying cellular pathophysiology we targeted loss of function of cac to the memory centre of the fly, called the mushroom bodies (MB). This manipulation was sufficient to cause reduction in both short- and intermediate-term associative memory. Memory impairment was accompanied by a decrease in Ca2+ transients in response to a depolarizing stimulus, imaged in the MB presynaptic terminals. This work shows loss of cac Cav2 channel function alone causes a number of cognitive and behavioural deficits and underlying reduced neuronal Ca2+ transients, establishing Drosophila as a high-throughput in vivo genetic model to study the Cav channel pathophysiology related to schizophrenia.


Subject(s)
Calcium Channels, N-Type/physiology , Calcium Channels/physiology , Circadian Rhythm/physiology , Memory/physiology , Schizophrenia/physiopathology , Sleep/physiology , Animals , Animals, Genetically Modified , Drosophila , Drosophila Proteins/physiology , Female , Locomotion/physiology , Male , Schizophrenia/genetics
15.
Transl Psychiatry ; 11(1): 292, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001859

ABSTRACT

Schizophrenia shows high heritability and several of the genes associated with this disorder are involved in calcium (Ca2+) signalling and synaptic function. One of these is the Rab-3 interacting molecule-1 (RIM1), which has recently been associated with schizophrenia by Genome Wide Association Studies (GWAS). However, its contribution to the pathophysiology of this disorder remains unexplored. In this work, we use Drosophila mutants of the orthologue of RIM1, Rim, to model some aspects of the classical and non-classical symptoms of schizophrenia. Rim mutants showed several behavioural features relevant to schizophrenia including social distancing and altered olfactory processing. These defects were accompanied by reduced evoked Ca2+ influx and structural changes in the presynaptic terminals sent by the primary olfactory neurons to higher processing centres. In contrast, expression of Rim-RNAi in the mushroom bodies (MBs), the main memory centre in flies, spared learning and memory suggesting a differential role of Rim in different synapses. Circadian deficits have been reported in schizophrenia. We observed circadian locomotor activity deficits in Rim mutants, revealing a role of Rim in the pacemaker ventral lateral clock neurons (LNvs). These changes were accompanied by impaired day/night remodelling of dorsal terminal synapses from a subpopulation of LNvs and impaired day/night release of the circadian neuropeptide pigment dispersing factor (PDF) from these terminals. Lastly, treatment with the commonly used antipsychotic haloperidol rescued Rim locomotor deficits to wildtype. This work characterises the role of Rim in synaptic functions underlying behaviours disrupted in schizophrenia.


Subject(s)
Drosophila Proteins , Schizophrenia , Animals , Circadian Rhythm , Drosophila Proteins/genetics , Drosophila melanogaster , Genome-Wide Association Study , Models, Genetic , Phenotype , Schizophrenia/genetics
16.
Sci Rep ; 11(1): 2061, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479461

ABSTRACT

Globally, neonicotinoids are the most used insecticides, despite their well-documented sub-lethal effects on beneficial insects. Neonicotinoids are nicotinic acetylcholine receptor agonists. Memory, circadian rhythmicity and sleep are essential for efficient foraging and pollination and require nicotinic acetylcholine receptor signalling. The effect of field-relevant concentrations of the European Union-banned neonicotinoids: imidacloprid, clothianidin, thiamethoxam and thiacloprid were tested on Drosophila memory, circadian rhythms and sleep. Field-relevant concentrations of imidacloprid, clothianidin and thiamethoxam disrupted learning, behavioural rhythmicity and sleep whilst thiacloprid exposure only affected sleep. Exposure to imidacloprid and clothianidin prevented the day/night remodelling and accumulation of pigment dispersing factor (PDF) neuropeptide in the dorsal terminals of clock neurons. Knockdown of the neonicotinoid susceptible Dα1 and Dß2 nicotinic acetylcholine receptor subunits in the mushroom bodies or clock neurons recapitulated the neonicotinoid like deficits in memory or sleep/circadian behaviour respectively. Disruption of learning, circadian rhythmicity and sleep are likely to have far-reaching detrimental effects on beneficial insects in the field.


Subject(s)
Circadian Rhythm/drug effects , Memory/drug effects , Receptors, Nicotinic/genetics , Sleep/drug effects , Animals , Circadian Rhythm/genetics , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Guanidines/pharmacology , Insecticides/adverse effects , Insecticides/pharmacology , Memory/physiology , Neonicotinoids/adverse effects , Neonicotinoids/pharmacology , Neuropeptides/genetics , Nicotinic Agonists/pharmacology , Nitro Compounds/pharmacology , Sleep/genetics , Thiamethoxam/pharmacology , Thiazines/pharmacology , Thiazoles/pharmacology
17.
Mov Disord ; 36(5): 1158-1169, 2021 05.
Article in English | MEDLINE | ID: mdl-33449381

ABSTRACT

BACKGROUND: Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre-motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain-of-function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. OBJECTIVES: We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre-motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. METHODS: We generated a knock-in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium-imaging to assess AP shape, neurotransmission, and the activity of the larval pre-motor central pattern generator (CPG). We used video-tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. RESULTS: Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium-dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia-like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. CONCLUSION: Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Drosophila , Dyskinesias , Action Potentials/genetics , Animals , Electrophysiological Phenomena , Large-Conductance Calcium-Activated Potassium Channels/genetics
18.
Sci Rep ; 11(1): 155, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420240

ABSTRACT

Insects are ectothermal animals that are constrained in their survival and reproduction by external temperature fluctuations which require either active avoidance of or movement towards a given heat source. In Drosophila, different thermoreceptors and neurons have been identified that mediate temperature sensation to maintain the animal's thermal preference. However, less is known how thermosensory information is integrated to gate thermoresponsive motor behavior. Here we use transsynaptic tracing together with calcium imaging, electrophysiology and thermogenetic manipulations in freely moving Drosophila exposed to elevated temperature and identify different functions of ellipsoid body ring neurons, R1-R4, in thermoresponsive motor behavior. Our results show that warming of the external surroundings elicits calcium influx specifically in R2-R4 but not in R1, which evokes threshold-dependent neural activity in the outer layer ring neurons. In contrast to R2, R3 and R4d neurons, thermogenetic inactivation of R4m and R1 neurons expressing the temperature-sensitive mutant allele of dynamin, shibireTS, results in impaired thermoresponsive motor behavior at elevated 31 °C. trans-Tango mediated transsynaptic tracing together with physiological and behavioral analyses indicate that integrated sensory information of warming is registered by neural activity of R4m as input layer of the ellipsoid body ring neuropil and relayed on to R1 output neurons that gate an adaptive motor response. Together these findings imply that segregated activities of central complex ring neurons mediate sensory-motor transformation of external temperature changes and gate thermoresponsive motor behavior in Drosophila.


Subject(s)
Drosophila/physiology , Neurons/physiology , Animals , Drosophila/chemistry , Drosophila/genetics , Hot Temperature , Motor Activity , Neurons/chemistry , Neuropil/physiology , Thermosensing
19.
iScience ; 23(12): 101827, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33305183

ABSTRACT

Neonicotinoids have been implicated in the large declines observed in insects such as bumblebees, an important group of pollinators. Neonicotinoids are agonists of nicotinic acetylcholine receptors that are found throughout the insect central nervous system and are the main mediators of synaptic neurotransmission. These receptors are important for the function of the insect central clock and circadian rhythms. The clock allows pollinators to coincide their activity with the availability of floral resources and favorable flight temperatures, as well as impact learning, navigation, and communication. Here we show that exposure to the field-relevant concentration of 10 µg/L imidacloprid caused a reduction in bumblebee foraging activity, locomotion, and foraging rhythmicity. Foragers showed an increase in daytime sleep and an increase in the proportion of activity occurring at night. This could reduce foraging and pollination opportunities, reducing the ability of the colony to grow and reproduce, endangering bee populations and crop yields.

20.
Neurochem Int ; 138: 104753, 2020 09.
Article in English | MEDLINE | ID: mdl-32416114

ABSTRACT

Mutations in the dystrobrevin binding protein 1 (DTNBP1) gene that encodes for the dysbindin-1 protein, are associated with a higher risk for schizophrenia. Interestingly, individuals carrying high-risk alleles in this gene have been associated with an increased incidence of negative symptoms for the disease, which include anhedonia, avolition and social withdrawal. Here we evaluated behavioral and neurochemical changes in a hypomorphic Drosophila mutant for the orthologue of human Dysbindin-1, dysb1. Mutant dysb1 flies exhibit altered social space parameters, suggesting asocial behavior, accompanied by reduced olfactory performance. Moreover, dysb1 mutant flies show poor performance in basal and startle-induced locomotor activity. We also report a reduction in serotonin brain levels and changes in the expression of the Drosophila serotonin transporter (dSERT) in dysb1 flies. Our data show that the serotonin-releasing amphetamine derivative 4-methylthioamphetamine (4-MTA) modulates social spacing and locomotion in control flies, suggesting that serotonergic circuits modulate these behaviors. 4-MTA was unable to modify the behavioral deficiencies in mutant flies, which is consistent with the idea that the efficiency of pharmacological agents acting at dSERT depends on functional serotonergic circuits. Thus, our data show that the dysb1 mutant exhibits behavioral deficits that mirror some aspects of the endophenotypes associated with the negative symptoms of schizophrenia. We argue that at least part of the behavioral aspects associated with these symptoms could be explained by a serotonergic deficit. The dysb1 mutant presents an opportunity to study the molecular underpinnings of schizophrenia negative symptoms and reveals new potential targets for treatment of the disease.


Subject(s)
Drosophila Proteins/genetics , Dysbindin/genetics , Mutation/genetics , Schizophrenia/genetics , Serotonin/genetics , Social Interaction , Animals , Animals, Genetically Modified , Drosophila , Drosophila Proteins/metabolism , Dysbindin/metabolism , Humans , Male , Schizophrenia/metabolism , Serotonin/metabolism , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...