Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mol Hum Reprod ; 29(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38059603

ABSTRACT

Growth-restricted placentae have a reduced vascular network, impairing exchange of nutrients and oxygen. However, little is known about the differentiation events and cell types that underpin normal/abnormal placental vascular formation and function. Here, we used 23-colour flow cytometry to characterize placental vascular/perivascular populations between first trimester and term, and in foetal growth restriction (FGR). First-trimester endothelial cells had an immature phenotype (CD144+/lowCD36-CD146low), while term endothelial cells expressed mature endothelial markers (CD36+CD146+). At term, a distinct population of CD31low endothelial cells co-expressed mesenchymal markers (CD90, CD26), indicating a capacity for endothelial to mesenchymal transition (EndMT). In FGR, compared with normal pregnancies, endothelial cells constituted 3-fold fewer villous core cells (P < 0.05), contributing to an increased perivascular: endothelial cell ratio (2.6-fold, P < 0.05). This suggests that abnormal EndMT may play a role in FGR. First-trimester endothelial cells underwent EndMT in culture, losing endothelial (CD31, CD34, CD144) and gaining mesenchymal (CD90, CD26) marker expression. Together this highlights how differences in villous core cell heterogeneity and phenotype may contribute to FGR pathophysiology across gestation.


Subject(s)
Fetal Growth Retardation , Placenta , Humans , Pregnancy , Female , Placenta/metabolism , Pregnancy Trimester, First , Fetal Growth Retardation/metabolism , Dipeptidyl Peptidase 4/metabolism , Endothelial Cells/metabolism
2.
Mol Genet Genomics ; 298(5): 1045-1058, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269361

ABSTRACT

Transposable elements (TEs) are genetic elements that have evolved as crucial regulators of human development and cancer, functioning as both genes and regulatory elements. When TEs become dysregulated in cancer cells, they can serve as alternate promoters to activate oncogenes, a process known as onco-exaptation. This study aimed to explore the expression and epigenetic regulation of onco-exaptation events in early human developmental tissues. We discovered co-expression of some TEs and oncogenes in human embryonic stem cells and first trimester and term placental tissues. Previous studies identified onco-exaptation events in various cancer types, including an AluJb SINE element-LIN28B interaction in lung cancer cells, and showed that the TE-derived LIN28B transcript is associated with poor patient prognosis in hepatocellular carcinoma. This study further characterized the AluJb-LIN28B transcript and confirmed that its expression is restricted to the placenta. Targeted DNA methylation analysis revealed differential methylation of the two LIN28B promoters between placenta and healthy somatic tissues, indicating that some TE-oncogene interactions are not cancer-specific but arise from the epigenetic reactivation of developmental TE-derived regulatory events. In conclusion, our findings provide evidence that some TE-oncogene interactions are not limited to cancer and may originate from the epigenetic reactivation of TE-derived regulatory events that are involved in early development. These insights broaden our understanding of the role of TEs in gene regulation and suggest the potential importance of targeting TEs in cancer therapy beyond their conventional use as cancer-specific markers.


Subject(s)
DNA Transposable Elements , Neoplasms , Pregnancy , Humans , Female , Epigenesis, Genetic , Placenta , Regulatory Sequences, Nucleic Acid , Neoplasms/genetics , RNA-Binding Proteins/genetics
3.
Int J Ther Massage Bodywork ; 16(1): 30-43, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36866184

ABSTRACT

Miscarriage is a relatively common occurrence, impacting 8-15% of clinically recognised pregnancies, and up to 30% of all conceptions. The public perception of the risk factors associated with miscarriage does not match the evidence. Evidence indicates that there are very few modifiable factors to prevent miscarriage, and the majority of the time little could have been done to prevent a spontaneous miscarriage. However, the public perception is that consuming drugs, lifting a heavy object, previous use of an intrauterine device, or massage can all contribute to miscarriage. While misinformation about the causes and risk factors of miscarriage continues to circulate, pregnant women will experience confusion about what activities they can (and cannot) do in early pregnancy, including receiving a massage. Pregnancy massage is an important component of massage therapy education. The resources that underpin pregnancy massage coursework consist of educational print content that includes direction and caution that massage in the first trimester, if done 'incorrectly' or in the 'wrong' location, can contribute to adverse outcomes such as miscarriage. The most common statements, perceptions and explanations for massage and miscarriage cover three broad areas: 1) maternal changes from massage affects the embryo/fetus; 2) massage leads to damage of the fetus/placenta; and 3) aspects of the massage treatment in the first trimester initiate contractions. The goal of this paper is to use scientific rationale to critically consider the validity of the current perceptions and explanations of massage therapy and miscarriage. Whilst direct evidence from clinical trials was lacking, considerations of physiological mechanisms regulating pregnancy and known risk factors associated with miscarriage provide no evidence that massage in pregnancy would increase a patient's risk of miscarriage. This scientific rationale should be addressed when teaching pregnancy massage courses.

4.
Ann Biomed Eng ; 51(6): 1256-1269, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36745293

ABSTRACT

The placenta is a critical fetal exchange organ, with a complex branching tree-like structure. Its surface is covered by a single multinucleated cell, the syncytiotrophoblast, which bathes in maternal blood for most of pregnancy. Mechanosensing protein expression by the syncytiotrophoblast at term suggests that shear stress exerted by maternal blood flow may modulate placental development and function. However, it is not known how the mechanosensitive capacity of the syncytiotrophoblast, or the shear stress it experiences, change across gestation. Here, we show that the syncytiotrophoblast expresses both mechanosensitive ion channels (Piezo 1, Polycystin 2, TRPV6) and motor proteins associated with primary cilia (Dynein 1, IFT88, Kinesin 2), with higher staining for all these proteins seen in late first trimester placentae than at term. MicroCT imaging of placental tissue was then used to inform computational models of blood flow at the placentone scale (using a porous media model), and at the villous scale (using explicit flow simulations). These two models are then linked to produce a combined model that allows the variation of shear stress across both these scales simultaneously. This combined model predicts that the range of shear stress on the syncytiotrophoblast is higher in the first-trimester than at term (0.8 dyne/cm2 median stress compared to 0.04 dyne/cm2) when considering both these scales. Together, this suggests that the nature of blood flow through the intervillous space, and the resulting shear stress on the syncytiotrophoblast have important influences on placental morphogenesis and function from early in pregnancy.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Humans , Placenta/metabolism , Hemodynamics
5.
Elife ; 112022 08 03.
Article in English | MEDLINE | ID: mdl-35920626

ABSTRACT

Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.


Subject(s)
Dipeptidyl Peptidase 4 , Mesenchymal Stem Cells , Adapalene/metabolism , Biomarkers/metabolism , CD146 Antigen/genetics , CD146 Antigen/metabolism , Cell Differentiation/physiology , Cells, Cultured , Dipeptidyl Peptidase 4/metabolism , Female , Flow Cytometry , Humans , Mesenchymal Stem Cells/metabolism , Phenotype , Placenta/metabolism , Pregnancy , Pregnancy Trimester, First , Thy-1 Antigens/metabolism
6.
Cell Mol Life Sci ; 79(7): 384, 2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35753002

ABSTRACT

The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.


Subject(s)
Placenta , Placentation , Cell Differentiation , Female , Humans , Pregnancy , Stem Cells , Trophoblasts
7.
Am J Physiol Heart Circ Physiol ; 323(1): H72-H88, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35452318

ABSTRACT

`The entire maternal circulation adapts to pregnancy, and this adaption is particularly extensive in the uterine circulation where the major vessels double in size to facilitate an approximately 15-fold increase in blood supply to this organ over the course of pregnancy. Several factors may play a role in both the remodeling and biomechanical function of the uterine vasculature including the paracrine microenvironment, passive properties of the vessel wall, and active components of vascular function (incorporating the myogenic response and response to shear stress induced by intravascular blood flow). However, the interplay between these factors and how this plays out in an organ-specific manner to induce the extent of remodeling observed in the uterus is not well understood. Here we present an integrated assessment of the uterine radial arteries, likely rate limiters to the flow of oxygenated maternal blood to the placental surface, via computational modeling and pressure myography. We show that uterine radial arteries behave differently to other systemic vessels (higher compliance and shear-mediated constriction) and that their properties change with the adaptation to pregnancy (higher myogenic tone, higher compliance, and ability to tolerate higher flow rates before constricting). Together, this provides a useful tool to improve our understanding of the role of uterine vascular adaptation in normal and abnormal pregnancies and highlights the need for vascular bed-specific investigations of vascular function in health and disease.NEW & NOTEWORTHY To our knowledge, this is the first data-driven computational model of autoregulation of uterine radial arteries, likely rate limiters of maternal blood flow to the placenta. The study demonstrates that uterine radial arteries behave differently from systemic vessels (higher compliance, shear-mediated constriction) and change in pregnancy (higher myogenic tone, higher compliance, tolerance of higher flow rates). This pregnancy-specific mathematical model of vascular reactivity allows interrogation of the functional significance of incomplete vascular adaption in pathology.


Subject(s)
Placenta , Radial Artery , Female , Humans , Placenta/blood supply , Placental Circulation , Pregnancy , Uterine Artery/physiology , Uterus/blood supply
8.
Placenta ; 125: 78-83, 2022 07.
Article in English | MEDLINE | ID: mdl-34743918

ABSTRACT

Career trajectories in science are often unpredictable, with many early and mid-career researchers working multiple successive fixed-term contracts, and physically relocating to take up employment opportunities. Whilst this can provide exciting opportunities to change research direction, acquire new skills, and see the world, the precarity of this scenario is also a significant cause of anxiety for many, and can have a negative impact on their ability to maintain career momentum and trajectory, access institutional financial benefits, or make long term career or financial plans. Here, we build on a pair of workshops held at the 2021 International Federation of Placenta Associations annual conference to discuss two key areas important to help early career researchers navigate their careers - building an academic profile, and the financial ramifications of academic careers.


Subject(s)
Career Choice
9.
Placenta ; 125: 68-77, 2022 07.
Article in English | MEDLINE | ID: mdl-34819240

ABSTRACT

Early placental development lays the foundation of a healthy pregnancy, and numerous tightly regulated processes must occur for the placenta to meet the increasing nutrient and oxygen exchange requirements of the growing fetus later in gestation. Inadequacies in early placental development can result in disorders such as fetal growth restriction that do not present clinically until the second half of gestation. Indeed, growth restricted placentae exhibit impaired placental development and function, including reduced overall placental size, decreased branching of villi and the blood vessels within them, altered trophoblast function, and impaired uterine vascular remodelling, which together combine to reduce placental exchange capacity. This review explores the importance of early placental development across multiple anatomical aspects of placentation, from the stem cells and lineage hierarchies from which villous core cells and trophoblasts arise, through extravillous trophoblast invasion and spiral artery remodelling, and finally remodelling of the larger uterine vessels.


Subject(s)
Placenta , Placentation , Arteries , Female , Humans , Placenta/blood supply , Pregnancy , Stem Cells , Trophoblasts
11.
Cartilage ; 13(2_suppl): 544S-558S, 2021 12.
Article in English | MEDLINE | ID: mdl-34521248

ABSTRACT

OBJECTIVES: Mesenchymal stem/stromal cells (MSCs) are a well-established cell source for cartilage engineering, but challenges remain as differentiation often results in chondrocyte hypertrophy. Chondrogenic potential also varies with MSC source and donor age. We assessed the chondrogenic potential of first-trimester and term placental MSCs and compared their response to commonly used bone marrow MSCs (BM-MSCs). DESIGN: MSCs were isolated from first-trimester and term placentae. BM-MSCs were commercially obtained. Chondrogenesis was induced by micromass culture in commercial chondrogenic media for 7, 14, or 21 days. Pellets were assessed for glycosaminoglycan (GAG) content, and types I, II, and X collagen. Gene expression was profiled using Qiagen RT2 human MSC arrays. RESULTS: At day 0, first-trimester and term MSCs expression levels of many chondrogenic genes to BM-MSC after 21 days of culture. Only first trimester MSCs showed significant changes in chondrogenic gene expression during induction compared to day 0 undifferentiated MSCs (greater BMP4, KAT2B, and reduced GDF6 expression). Additionally, first-trimester MSCs showed significantly greater expression of ABCB1 (at days 14 and 21) and BMP4 (at days 7, 14, 21) compared with term MSCs. Both first-trimester and term pellets showed increased GAG content over time and term MSCs had significantly GAG greater compared with BM-MSCs at days 7 and 14. Type II collagen was present in all pellets but unlike BM-MSCs, type I collagen was not observed in first-trimester or term MSC pellets. CONCLUSIONS: These data highlight differences in BM-MSC and placental MSC chondrogenesis and demonstrate that placental MSCs may be an alternative cell source.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Bone Marrow Cells/physiology , Chondrocytes/metabolism , Chondrogenesis/physiology , Female , Humans , Mesenchymal Stem Cells/physiology , Placenta , Pregnancy , Pregnancy Trimester, First
12.
Reproduction ; 162(4): 319-330, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34397395

ABSTRACT

Placentae from pregnancies with foetal growth restriction (FGR) exhibit poor oxygen and nutrient exchange, in part due to impaired placental vascular development. Placental mesenchymal stromal cells (pMSCs) reside in a perivascular niche, where they may influence blood vessel formation/function. However, the role of pMSCs in vascular dysfunction in FGR is unclear. To elucidate the mechanisms by which pMSCs may impact placental vascularisation we compared the transcriptomes of human pMSCs isolated from FGR (<5th centile) (n = 7) and gestation-matched control placentae (n = 9) using Affymetrix microarrays. At the transcriptome level, there were no statistically significant differences between normal and FGR pMSCs; however, several genes linked to vascular function exhibited notable fold changes, and thus the dataset was used as a hypothesis-generating tool for possible dysfunction in FGR. Genes/proteins of interest were followed up by real-time PCR, western blot and immunohistochemistry. Gene expression of ADAMTS1 and FBLN2 (fibulin-2) were significantly upregulated, whilst HAS2 (hyaluronan synthase-2) was significantly downregulated, in pMSCs from FGR placentae (n = 8) relative to controls (n = 7, P < 0.05 for all). At the protein level, significant differences in the level of fibulin-2 and hyaluronan synthase-2, but not ADAMTS1, were confirmed between pMSCs from FGR and control pregnancies by Western blot. All three proteins demonstrated perivascular expression in third-trimester placentae. Fibulin-2 maintains vessel elasticity, and its increased expression in FGR pMSCs could help explain the increased distensibility of FGR blood vessels. ADAMTS1 and hyaluronan synthase-2 regulate angiogenesis, and their differential expression by FGR pMSCs may contribute to the impaired angiogenesis in these placentae.


Subject(s)
Fetal Growth Retardation , Mesenchymal Stem Cells , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Placenta/metabolism , Pregnancy
13.
Placenta ; 112: 111-122, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34329969

ABSTRACT

Placental structures at the nano-, micro-, and macro scale each play important roles in contributing to its function. As such, quantifying the dynamic way in which placental structure evolves during pregnancy is critical to both clinical diagnosis of pregnancy disorders, and mechanistic understanding of their pathophysiology. Imaging the placenta, both exvivo and invivo, can provide a wealth of structural and/or functional information. This review outlines how imaging across modalities and spatial scales can ultimately come together to improve our understanding of normal and pathological pregnancies. We discuss how imaging technologies are evolving to provide new insights into placental physiology across disciplines, and how advanced computational algorithms can be used alongside state-of-the-art imaging to obtain a holistic view of placental structure and its associated functions to improve our understanding of placental function in health and disease.


Subject(s)
Magnetic Resonance Imaging , Multimodal Imaging , Placenta/diagnostic imaging , Ultrasonography, Prenatal , Female , Humans , Placenta/physiology , Pregnancy
14.
Hum Reprod ; 36(3): 571-586, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33600565

ABSTRACT

STUDY QUESTION: What is the physiological extent of vascular remodelling in and trophoblast plugging of the uterine circulation across the first half of pregnancy? SUMMARY ANSWER: All levels of the uterine vascular tree (arcuate, radial and spiral arteries (SAs)) dilate ∼2.6- to 4.3-fold between 6 and 20 weeks of gestation, with significant aggregates of trophoblasts persisting in the decidual and myometrial parts of SAs beyond the first trimester. WHAT IS KNOWN ALREADY: In early pregnancy, endovascular trophoblasts form 'plugs' in the SAs, transiently inhibiting blood flow to the placenta, whilst concurrently the uterine vasculature undergoes significant adaption to facilitate increased blood delivery to the placenta later in gestation. These processes are impaired in pregnancy disorders, but quantitative understanding of the anatomical changes even in normal pregnancy is poor. STUDY DESIGN, SIZE, DURATION: Serial sections of normal placentae in situ (n = 22) of 6.1-20.5 weeks of gestation from the Boyd collection and Dixon collection (University of Cambridge, UK) were digitalized using a slide scanner or Axio Imager.A1 microscope. PARTICIPANTS/MATERIALS, SETTING, METHODS: Spiral (n = 45), radial (n = 40) and arcuate (n = 39) arteries were manually segmented. Using custom-written scripts for Matlab® software, artery dimensions (Feret diameters; major axes; luminal/wall area) and endovascular trophoblast plug/aggregate (n = 24) porosities were calculated. Diameters of junctional zone SAs within the myometrium (n = 35) were acquired separately using a micrometre and light microscope. Decidual thickness and trophoblast plug depth was measured using ImageJ. MAIN RESULTS AND THE ROLE OF CHANCE: By all measures, radial and arcuate artery dimensions progressively increased from 6.1 to 20.5 weeks (P < 0.01). The greatest increase in SA calibre occurred after 12 weeks of gestation. Trophoblast aggregates were found to persist within decidual and myometrial parts of SA lumens beyond the first trimester, and up to 18.5 weeks of gestation, although those present in the second trimester did not appear to prevent the passage of red blood cells to the intervillous space. Trophoblasts forming these aggregates became more compact (decreased in porosity) over gestation, whilst channel size between cells increased (P = 0.01). Decidual thickness decreased linearly over gestation (P = 0.0003), meaning plugs occupied an increasing proportion of the decidua (P = 0.02). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Although serial sections were assessed, two-dimensional images cannot completely reflect the three-dimensional properties and connectivity of vessels and plugs/aggregates. Immersion-fixation of the specimens means that vessel size may be under-estimated. WIDER IMPLICATIONS OF THE FINDINGS: Uterine vascular remodelling and trophoblast plug dispersion is a progressive phenomenon that is not completed by the end of the first trimester. Our quantitative findings support the concept that radial arteries present a major site of resistance until mid-gestation. Their dimensional increase at 10-12 weeks of gestation may explain the rapid increase in blood flow to the placenta observed by others at ∼13 weeks. Measured properties of trophoblast plugs suggest that they will impact on the resistance, shear stress and nature of blood flow within the utero-placental vasculature until mid-gestation. The presence of channels within plugs will likely lead to high velocity flow streams and thus increase shear stress experienced by the trophoblasts forming the aggregates. Quantitative understanding of utero-placental vascular adaptation gained here will improve in silico modelling of utero-placental haemodynamics and provide new insights into pregnancy disorders, such as fetal growth restriction. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by a Royal Society Te Aparangi Marsden Grant [18-UOA-135]. A.R.C. is supported by a Rutherford Discovery Fellowship [14-UOA-019]. The authors have no conflict of interest to declare.


Subject(s)
Placental Circulation , Trophoblasts , Decidua , Female , Humans , Placenta , Pregnancy , Pregnancy Trimester, First , Vascular Remodeling
15.
J Theor Biol ; 517: 110630, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33607145

ABSTRACT

A well-functioning placenta is critical for healthy fetal development, as the placenta brings fetal blood in close contact with nutrient rich maternal blood, enabling exchange of nutrients and waste between mother and fetus. The feto-placental circulation forms a complex branching structure, providing blood to fetal capillaries, which must receive sufficient blood flow to ensure effective exchange, but at a low enough pressure to prevent damage to placental circulatory structures. The branching structure of the feto-placental circulation is known to be altered in complications such as fetal growth restriction, and the presence of regions of vascular dysfunction (such as hypovascularity or thrombosis) are proposed to elevate risk of placental pathology. Here we present a methodology to combine micro-computed tomography and computational model-based analysis of the branching structure of the feto-placental circulation in ex vivo placentae from normal term pregnancies. We analyse how vascular structure relates to function in this key organ of pregnancy; demonstrating that there is a 'resilience' to placental vascular structure-function relationships. We find that placentae with variable chorionic vascular structures, both with and without a Hyrtl's anastomosis between the umbilical arteries, and those with multiple regions of poorly vascularised tissue are able to function with a normal vascular resistance. Our models also predict that by progressively introducing local heterogeneity in placental vascular structure, large increases in feto-placental vascular resistances are induced. This suggests that localised heterogeneities in placental structure could potentially provide an indicator of increased risk of placental dysfunction.


Subject(s)
Placenta , Placental Circulation , Computer Simulation , Female , Humans , Placenta/diagnostic imaging , Pregnancy , Structure-Activity Relationship , X-Ray Microtomography
16.
WIREs Mech Dis ; 13(1): e1502, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32744412

ABSTRACT

In pregnancy, fetal growth is supported by its placenta. In turn, the placenta is nourished by maternal blood, delivered from the uterus, in which the vasculature is dramatically transformed to deliver this blood an ever increasing volume throughout gestation. A healthy pregnancy is thus dependent on the development of both the placental and maternal circulations, but also the interface where these physically separate circulations come in close proximity to exchange gases and nutrients between mum and baby. As the system continually evolves during pregnancy, our understanding of normal vascular anatomy, and how this impacts placental exchange function is limited. Understanding this is key to improve our ability to understand, predict, and detect pregnancy pathologies, but presents a number of challenges, due to the inaccessibility of the pregnant uterus to invasive measurements, and limitations in the resolution of imaging modalities safe for use in pregnancy. Computational approaches provide an opportunity to gain new insights into normal and abnormal pregnancy, by connecting observed anatomical changes from high-resolution imaging to function, and providing metrics that can be observed by routine clinical ultrasound. Such advanced modeling brings with it challenges to scale detailed anatomical models to reflect organ level function. This suggests pathways for future research to provide models that provide both physiological insights into pregnancy health, but also are simple enough to guide clinical focus. We the review evolution of computational approaches to understanding the physiology and pathophysiology of pregnancy in the uterus, placenta, and beyond focusing on both opportunities and challenges. This article is categorized under: Reproductive System Diseases >Computational Models.


Subject(s)
Placenta , Uterus , Female , Humans , Placenta/diagnostic imaging , Pregnancy , Uterus/diagnostic imaging
17.
Placenta ; 101: 66-74, 2020 11.
Article in English | MEDLINE | ID: mdl-32932101

ABSTRACT

INTRODUCTION: Derivation of pure fetal placental mesenchymal stem/stromal cells (pMSCs) is key to understand their role in placental development. However, isolated pMSCs are often contaminated by maternal-derived decidual MSCs (dMSCs). EGM-2 medium promotes the derivation of term fetal pMSCs, but the extent of first-trimester maternal pMSC contamination remains unclear. Culture media can also affect MSC phenotype. Here, we examined the effects of culture media on maternal pMSC contamination and fetal pMSC phenotype across gestation. METHODS: pMSCs were derived from first-trimester or term placentae in advanced-DMEM/F12 medium or EGM-2 medium. Proportions of maternal (XX) and fetal (XY) cells in male pMSC cultures were determined by fluorescence in-situ hybridization. pMSC phenotype was analysed by flow cytometry, immunohistochemistry and Alamar blue proliferation assays. RESULTS: When derived in advanced-DMEM/F12, all first trimester pMSC isolates exhibited maternal contamination (>72% XX cells, n = 5), whilst 7/9 term pMSC isolates were >98% fetal. When derived in EGM-2, all first trimester (n = 4) and term (n = 9) pMSC isolates contained 95-100% fetal cells. Fetal pMSCs in EGM-2 proliferated 2-fold (first-trimester) or 4-fold (term) faster than those in advanced-DMEM/F12 (p < 0.05, n = 3). Fetal pMSCs in both media expressed the generic MSC marker profile (CD90+, CD105+, CD73+, CD31-, CD34-, CD144-). However, pMSCs transferred from EGM-2 to advanced-DMEM/F12 increased expression of smooth muscle cell markers calponin and α-smooth muscle actin, and decreased expression of the vascular cell marker VEGFR2 (n = 3). CONCLUSIONS: Deriving first-trimester pMSC in EGM-2 dramatically reduces maternal dMSC contamination. Media affects fetal pMSC phenotype, and careful consideration should be given to application specific culture conditions.


Subject(s)
Culture Media , Fetus/cytology , Mesenchymal Stem Cells/cytology , Placenta/cytology , Biomarkers/metabolism , Female , Humans , Mesenchymal Stem Cells/metabolism , Myofibroblasts/metabolism , Phenotype , Pregnancy , Pregnancy Trimester, First , Term Birth
18.
Stem Cell Rev Rep ; 16(4): 764-775, 2020 08.
Article in English | MEDLINE | ID: mdl-32548656

ABSTRACT

BACKGROUND: Fetal growth restriction often results from poor placental function and is a major cause of stillbirth. Clinically, fetal growth restriction is difficult to diagnose and currently has no effective treatment. Trophoblasts are unique placental cells that form the feto-maternal interface and facilitate nutrient and gas exchange. Fetal growth restriction is linked to inadequate trophoblast function. However, our understanding of the mechanisms underlying this dysfunction are poor, in part because of our inability to isolate and study the trophoblast stem cells from which mature trophoblasts arise in pathologic pregnancies. METHODS: Cells isolated from first-trimester placentae using the Hoechst side-population technique were propagated or differentiated into mature trophoblasts. Side-population trophoblasts were isolated from normal third-trimester and growth restricted placentae using the same technique. First and third-trimester side-population trophoblasts were compared by microarray analysis. RESULTS: First-trimester side-population trophoblasts could be propagated in an undifferentiated state or differentiated, via intermediate cytotrophoblasts, into syncytiotrophoblast or extravillous trophoblasts. Using the same technique, side-population trophoblasts could be isolated from term placentae for the first time, demonstrating that while they were present at consistent levels throughout gestation (~3·5%), side-population trophoblasts were significantly depleted in growth restricted pregnancies (0·32%). CONCLUSIONS: Our novel method of isolating a population of human trophoblast stem cell-like cells directly from human placental tissue throughout gestation provides the first insights into trophoblast dysfunction in pregnancy pathologies. The depletion of side-population trophoblasts in growth restricted placentae may contribute to poor placental function.


Subject(s)
Cell Differentiation , Fetal Growth Retardation/pathology , Stem Cells/cytology , Trophoblasts/cytology , Adult , Female , Fetus/pathology , Humans , Placenta/cytology , Pregnancy , Pregnancy Trimester, First/physiology , Pregnancy Trimester, Third/physiology
19.
Placenta ; 96: 10-18, 2020 07.
Article in English | MEDLINE | ID: mdl-32421528

ABSTRACT

The placenta is essential for the efficient delivery of nutrients and oxygen from mother to fetus to maintain normal fetal growth. Dysfunctional placental development underpins many pregnancy complications, including fetal growth restriction (FGR) a condition in which the fetus does not reach its growth potential. The FGR placenta is smaller than normal placentae throughout gestation and displays maldevelopment of both the placental villi and the fetal vasculature within these villi. Specialized epithelial cells called trophoblasts exhibit abnormal function and development in FGR placentae. This includes an altered balance between proliferation and apoptotic death, premature cellular senescence, and reduced colonisation of the maternal decidual tissue. Thus, the placenta undergoes aberrant changes at the macroscopic to cellular level in FGR, which can limit exchange capacity and downstream fetal growth. This review aims to compile stereological, in vitro, and imaging data to create a holistic overview of the FGR placenta and its pathophysiology, with a focus on the contribution of trophoblasts.


Subject(s)
Fetal Growth Retardation/physiopathology , Placenta/physiopathology , Trophoblasts/cytology , Animals , Chorionic Villi/physiopathology , Female , Humans , Infant, Newborn , Infant, Small for Gestational Age , Placenta/blood supply , Placentation/physiology , Pregnancy
20.
Stem Cell Rev Rep ; 16(3): 557-568, 2020 06.
Article in English | MEDLINE | ID: mdl-32080795

ABSTRACT

The extensively branched vascular network within the placenta is vital for materno-fetal exchange, and inadequate development of this network is implicated in the pregnancy disorder fetal growth restriction (FGR), where babies are born pathologically small. Placental mesenchymal stem/stromal cells (pMSCs) and placental macrophages both reside in close proximity to blood vessels within the placenta, where they are thought to promote angiogenesis via paracrine mechanisms. However, the relationship between pMSCs, macrophages and placental vascular development has not yet been examined. We aimed to determine if inadequate paracrine stimulation of placental vascular development by pMSCs and macrophages during pregnancy may contribute to the inadequate vascularisation seen in FGR. Media conditioned by MSCs from FGR placentae significantly inhibited endothelial tube formation, compared to conditioned media derived from normal pMSCs. Similarly, macrophages exposed to media conditioned by FGR pMSCs were less able to stimulate endothelial tube formation in comparison to macrophages exposed to media conditioned by normal pMSCs. While MSCs from normal placentae produce a combination of angiogenic and anti-angiogenic cytokines, there were no significant differences in the secretion of the anti-angiogenic cytokines thrombospondin-1, insulin growth factor binding protein-4, or decorin between normal and FGR pMSCs that could explain how FGR pMSCs inhibited endothelial tube formation. Together, these data suggest a dysregulation in the secretion of paracrine factors by pMSCs in FGR placentae. These findings illustrate how cross talk between pro-angiogenic cell types in the placenta may be crucial for adequate angiogenesis.


Subject(s)
Fetal Growth Retardation/pathology , Mesenchymal Stem Cells/pathology , Neovascularization, Physiologic , Placenta/pathology , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Female , Fluorescent Dyes/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Neovascularization, Physiologic/drug effects , Phenotype , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...