Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Nat Commun ; 15(1): 4326, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773113

ABSTRACT

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Subject(s)
Dinoprostone , Disease Models, Animal , Lung , Macrophages , Mice, Inbred C57BL , Pneumonia, Pneumococcal , Receptors, Prostaglandin E, EP4 Subtype , Streptococcus pneumoniae , Animals , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/metabolism , Mice , Dinoprostone/metabolism , Streptococcus pneumoniae/immunology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Lung/pathology , Lung/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/genetics , Female , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/immunology
2.
Blood Transfus ; 22(2): 96-105, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37458716

ABSTRACT

BACKGROUND: Restrictions previously limiting the ability of men who have sex with men to donate blood are being eased in a number of nations worldwide. In the context of these changes, it is important to determine public perceptions of receiving a transfusion of blood donated by men who have sex with men. MATERIALS AND METHODS: In online surveys, 510 (Study 1) and 1,062 (Study 2) heterosexual participants reported attitudes, anxiety, disgust, and gratitude towards potentially receiving a transfusion of blood donated by a homosexual male donor and a heterosexual male donor. In Study 2, half of the participants were reminded of the safety testing carried out on donated blood samples. Negative attitudes, anxiety, disgust, and gratitude were compared between the two donors using t-tests and within-participants indirect effects analysis. RESULTS: Stronger negative attitudes, higher anxiety and disgust, and lower gratitude were reported in relation to a potential transfusion of blood donated by the homosexual male donor relative to the heterosexual male donor (|d|=0.26-0.46). This was the case even when participants were reminded of the safety testing completed on donated blood samples in Study 2. In both studies, the effect of donor sexual orientation on attitudes was explained via heightened anxiety and disgust and attenuated gratitude (b=0.05-0.30). DISCUSSION: Considering receiving a transfusion of blood donated by a homosexual male donor elicits more negative attitudes, anxiety and disgust, and less positive emotion, relative to blood donated by a heterosexual male donor. These attitudes and emotional reactions are not shifted by a reminder of the safety testing carried out on donated blood samples. In the context of changing restrictions on blood donation by men who have sex with men, these findings highlight a challenge to shift public perception to embrace this cohort of donors.


Subject(s)
Homosexuality, Male , Sexual and Gender Minorities , Humans , Male , Female , Homosexuality, Male/psychology , Sexual Behavior , Blood Transfusion , Blood Donors/psychology , Surveys and Questionnaires
3.
Proc Natl Acad Sci U S A ; 120(43): e2304288120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844244

ABSTRACT

Integrin-dependent adhesion to the extracellular matrix (ECM) mediates mechanosensing and signaling in response to altered microenvironmental conditions. In order to provide tissue- and organ-specific cues, the ECM is composed of many different proteins that temper the mechanical properties and provide the necessary structural diversity. Despite most human tissues being soft, the prevailing view from predominantly in vitro studies is that increased stiffness triggers effective cell spreading and activation of mechanosensitive signaling pathways. To address the functional coupling of ECM composition and matrix rigidity on compliant substrates, we developed a matrix spot array system to screen cell phenotypes against different ECM mixtures on defined substrate stiffnesses at high resolution. We applied this system to both cancer and normal cells and surprisingly identified ECM mixtures that support stiffness-insensitive cell spreading on soft substrates. Employing the motor-clutch model to simulate cell adhesion on biochemically distinct soft substrates, with varying numbers of available ECM-integrin-cytoskeleton (clutch) connections, we identified conditions in which spreading would be supported on soft matrices. Combining simulations and experiments, we show that cell spreading on soft is supported by increased clutch engagement on specific ECM mixtures and even augmented by the partial inhibition of actomyosin contractility. Thus, "stiff-like" spreading on soft is determined by a balance of a cell's contractile and adhesive machinery. This provides a fundamental perspective for in vitro mechanobiology studies, identifying a mechanism through which cells spread, function, and signal effectively on soft substrates.


Subject(s)
Extracellular Matrix , Integrins , Humans , Cell Adhesion , Extracellular Matrix/metabolism , Integrins/metabolism , Cytoskeleton/metabolism , Signal Transduction
4.
Sci Adv ; 9(28): eadg1840, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37436978

ABSTRACT

The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.


Subject(s)
Breast Neoplasms , Female , Humans , Adipocytes , Antibodies, Neutralizing , Breast , Insulin-Like Growth Factor II
5.
Sci Adv ; 9(17): eadf9063, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126544

ABSTRACT

Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.


Subject(s)
Biosensing Techniques , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods
6.
Proteomics Clin Appl ; 17(2): e2100085, 2023 03.
Article in English | MEDLINE | ID: mdl-36217952

ABSTRACT

PURPOSE: Peritoneal carcinomatosis (PC), metastasized from colorectal cancer (CRC), remains a highly lethal disease. Outcomes of PC is significantly influenced by the amount of intra-abdominal tumor burden and therefore diagnostic tests that facilitate earlier diagnosis could improve PC treatment and patient outcomes. EXPERIMENTAL DESIGN: Using mass-spectrometry-based proteomics, we characterized the protein features of circulating exosomes in the context of CRC PC, CRC with liver metastasis, and primary CRC limited to the colon. We profiled exosomes isolated from patient plasma to identify exosome-associated protein cargoes released by these cancer types. RESULTS: Analysis of the resulting data identified metastasis-specific exosome protein signatures. Bioinformatic analyses confirmed enrichment of proteins annotated to vesicle-associated processes and intracellular compartments, as well as representation of cancer hallmark functions and processes. CONCLUSION AND CLINICAL RELEVANCE: This research yielded distinct protein profiles for the CRC patient groups and suggests the utility of plasma exosome proteomic analysis for a better understanding of PC development and metastasis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Exosomes , Peritoneal Neoplasms , Humans , Pilot Projects , Peritoneal Neoplasms/pathology , Proteomics , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Biomarkers/metabolism , Exosomes/metabolism , Colorectal Neoplasms/metabolism
8.
Nat Methods ; 19(7): 829-832, 2022 07.
Article in English | MEDLINE | ID: mdl-35654950

ABSTRACT

TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.


Subject(s)
Algorithms , Software , Image Processing, Computer-Assisted/methods
9.
Discov Oncol ; 13(1): 38, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35633393

ABSTRACT

Breast Cancer (BrC) is a common malignancy with genetically diverse subtypes. There is evidence that specific BrC subtypes originate from particular normal mammary cell populations. However, the cell populations that give rise to most BrC subtypes are unidentified. Several human breast scRNAseq datasets are available. In this research, we utilized a robust human scRNAseq dataset to identify population-specific marker genes and then identified the expression of these marker genes in specific BrC subtypes. In humans, several BrC subtypes, HER2-enriched, basal-like, and triple-negative (TN), are more common in women who have had children. This observation suggests that cell populations that originate during pregnancy give rise to these BrCs. The current human datasets have few normal parous samples, so we supplemented this research with mouse datasets, which contain mammary cells from various developmental stages. This research identified two novel normal breast cell populations that may be the origin of the basal-like and HER2-overexpressing subtypes, respectively. A stem cell-like population, SC, that expresses gestation-specific genes has similar gene expression patterns to basal-like BrCs. A novel luminal progenitor cell population and HER2-overexpressing BrCs are marked by S100A7, S100A8, and S100A9 expression. We bolstered our findings by examining SC gene expression in TN BrC scRNAseq datasets and S100A7-A9 gene expression in BrC cell lines. We discovered that several potential cancer stem cell populations highly express most of the SC genes in TN BrCs and confirmed S100A8 and A9 overexpression in a HER2-overexpressing BrC cell line. In summary, normal SC and the novel luminal progenitor cell population likely give rise to basal-like and HER2-overexpressing BrCs, respectively. Characterizing these normal cell populations may facilitate a better understanding of specific BrCs subtypes.

10.
ACS Biomater Sci Eng ; 8(5): 1860-1866, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35377599

ABSTRACT

The use of biomaterials for the inclusion and stabilization of biopolymers is an ongoing challenge. Herein, we disclose three-dimensional (3D) coiled-coil peptide crystals with metal ions that include and overgrow His-tagged fluorescent proteins within the crystal. The protein guests are found within two symmetry-related growth sectors of the crystalline host that are associated with faces of the growing crystal that display ligands for metal ions. The fluorescent proteins are included within this "hourglass" region of the crystals at a notably high level, display order within the crystal hosts, and demonstrate sufficiently tight packing to enable energy transfer between a donor-acceptor pair. His-tagged fluorescent proteins display remarkable thermal stability to denaturation over extended periods of time (days) at high temperatures when within the crystals. Ultimately, this strategy may prove useful for the prolonged storage of thermally sensitive biopolymer guests within a 3D crystalline matrix.


Subject(s)
Peptides , Proteins , Amino Acid Sequence , Peptides/chemistry
11.
Cells ; 10(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34685704

ABSTRACT

Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.


Subject(s)
Docetaxel/pharmacology , Drug Resistance, Neoplasm , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Spheroids, Cellular/pathology , Antibody Specificity/immunology , Apoptosis/drug effects , Autoantibodies/metabolism , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Lineage/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Clone Cells , Drug Resistance, Neoplasm/drug effects , Humans , Male , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protein Binding/drug effects , Protein Domains , Protein Transport/drug effects , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Spheroids, Cellular/drug effects
12.
Nat Cell Biol ; 23(10): 1073-1084, 2021 10.
Article in English | MEDLINE | ID: mdl-34616024

ABSTRACT

Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis and cancer invasion. Unlike cargo-specific clathrin-mediated endocytosis, the clathrin- and dynamin-independent endocytic pathway (CLIC-GEEC, CG pathway) is considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. While the core molecular players of CG-endocytosis have been recently defined, evidence of cargo-specific adaptors or selective uptake of proteins for the pathway are lacking. Here we identify the actin-binding protein Swiprosin-1 (Swip1, EFHD2) as a cargo-specific adaptor for CG-endocytosis. Swip1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery-Arf1, IRSp53 and actin-and is critical for integrin endocytosis. Through this function, Swip1 supports integrin-dependent cancer-cell migration and invasion, and is a negative prognostic marker in breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG pathway and a role for specific adaptors in recruitment into this endocytic route.


Subject(s)
Breast Neoplasms/pathology , Clathrin/metabolism , Dynamins/metabolism , Endocytosis , Integrin beta1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Actins/metabolism , Biological Transport , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Movement , Clathrin/genetics , Dynamins/genetics , Female , Humans , Integrin beta1/genetics , Intracellular Signaling Peptides and Proteins/genetics , rab GTP-Binding Proteins/genetics
13.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586840

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

14.
FASEB J ; 35(10): e21913, 2021 10.
Article in English | MEDLINE | ID: mdl-34555204

ABSTRACT

ATB-346 is a hydrogen sulfide-releasing non-steroidal anti-inflammatory drug (H2 S-NSAID) derived from naproxen, which in preclinical studies has been shown to have markedly reduced gastrointestinal adverse effects. However, its anti-inflammatory properties in humans compared to naproxen are yet to be confirmed. To test this, we used a dermal model of acute inflammation in healthy, human volunteers, triggered by ultraviolet-killed Escherichia coli. This robust model allows quantification of the cardinal signs of inflammation along with cellular and humoral factors accumulating within the inflamed skin. ATB-346 was non-inferior to naproxen in terms of its inhibition of cyclooxygenase activity as well as pain and tenderness. ATB-346 significantly inhibited neutrophil infiltration at the site of inflammation at 4 h, compared to untreated controls. Subjects treated with ATB-346 also experienced significantly reduced pain and tenderness compared to healthy controls. Furthermore, both classical and intermediate monocyte subsets infiltrating the site of inflammation at 48 h expressed significantly lower levels of CD14 compared to untreated controls, demonstrating a shift toward an anti-inflammatory phenotype. Collectively, we have shown for the first time in humans that ATB-346 is potently anti-inflammatory and propose that ATB-346 represents the next generation of H2 S-NSAIDs, as a viable alternative to conventional NSAIDs, with reduced adverse effects profile.


Subject(s)
Hydrogen Sulfide/metabolism , Inflammation/drug therapy , Naproxen/analogs & derivatives , Adolescent , Adult , Dinoprostone/metabolism , Escherichia coli/immunology , Escherichia coli/radiation effects , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Male , Middle Aged , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , Naproxen/metabolism , Naproxen/pharmacology , Naproxen/therapeutic use , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/immunology , Pain/metabolism , Phenotype , Solubility , Ultraviolet Rays , Vasoconstriction/drug effects , Young Adult
15.
Curr Biol ; 31(10): R536-R542, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34033786

ABSTRACT

Tissue architecture and function are orchestrated by an intricate repertoire of cellular adhesion and signalling receptors, and by the surrounding extracellular matrix (ECM). The essential role of cell-tissue interactions in guiding organogenesis was identified in experimental embryology studies over a century ago, and in 1954 Grobstein laid down the fundamental concept of ECM being the ultimate integrator of cellular systems. Long before the main cell adhesion receptors were identified, Abercrombie and colleagues proposed in 1971 that cell attachment to the ECM substratum was mediated through electron-dense plaques containing longitudinal cytoplasmic filaments that localise to areas of the ventral cell membrane that lie close to the substratum. In 1982, Bissell and co-workers proposed "the minimum required unit for expression of tissue specific functions", a model depicting a structure in which the nucleus links to the ECM via cytoskeletal filament bundles that connect to a hypothetical transmembrane ECM adhesion receptor.


Subject(s)
Cytoskeleton , Extracellular Matrix , Carrier Proteins , Cell Adhesion , Cell Membrane/metabolism , Cytoskeleton/metabolism , Extracellular Matrix/metabolism , Humans , Integrins/metabolism
16.
Oncogene ; 40(7): 1300-1317, 2021 02.
Article in English | MEDLINE | ID: mdl-33420373

ABSTRACT

Current evidence indicates that resistance to the tyrosine kinase-type cell surface receptor (HER2)-targeted therapies is frequently associated with HER3 and active signaling via HER2-HER3 dimers, particularly in the context of breast cancer. Thus, understanding the response to HER2-HER3 signaling and the regulation of the dimer is essential to decipher therapy relapse mechanisms. Here, we investigate a bidirectional relationship between HER2-HER3 signaling and a type-1 transmembrane sorting receptor, sortilin-related receptor (SorLA; SORL1). We demonstrate that heregulin-mediated signaling supports SorLA transcription downstream of the mitogen-activated protein kinase pathway. In addition, we demonstrate that SorLA interacts directly with HER3, forming a trimeric complex with HER2 and HER3 to attenuate lysosomal degradation of the dimer in a Ras-related protein Rab4-dependent manner. In line with a role for SorLA in supporting the stability of the HER2 and HER3 receptors, loss of SorLA compromised heregulin-induced cell proliferation and sensitized metastatic anti-HER2 therapy-resistant breast cancer cells to neratinib in cancer spheroids in vitro and in vivo in a zebrafish brain xenograft model.


Subject(s)
Breast Neoplasms/genetics , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-3/genetics , Animals , Brain/drug effects , Brain/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Heterografts , Humans , Mice , Neuregulin-1/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Zebrafish , rab4 GTP-Binding Proteins/genetics
17.
Inorg Chem ; 60(1): 130-139, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33347759

ABSTRACT

A series of electron donor-acceptor compounds are reported in which both the donor and acceptor strengths are systematically altered using mono-, bi-, and terthiophene as donors and benzo[c][1,2,5]thiadiazole (btd), dipyrido[3,2-a:2',3'-c]phenazine (dppz), and the corresponding rhenium(I) complex, [ReCl(CO)3(dppz)], as acceptors. The electronic properties of the compounds are characterized using electrochemistry, electronic absorbance and emission spectroscopies, and transient absorption spectroscopy. The effect of donor and acceptor strengths on frontier molecular orbital localization and on the charge-transfer (CT) character of optical transitions is modeled using density functional theory (DFT) calculations. The electronic absorption spectra of the compounds investigated are dominated by intraligand charge-transfer (ILCT) transitions, where the CT character is shown to increase across the series from mono- to bi- to terthiophene but not significantly across the acceptor series. Emission is shown to originate from the absorbing state. Long-lived nonemissive states have been observed using transient absorption spectroscopy and assigned using triplet-state DFT calculations, which indicate that the lowest energy excited state has more thiophene-localized π,π* character with an increasing number of appended thiophenes.

18.
J Phys Chem A ; 124(43): 9105-9112, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-32975942

ABSTRACT

Multiagent consensus equilibrium (MACE) is demonstrated for the integration of experimental observables as constraints in molecular structure determination and for the systematic merging of multiple computational architectures. MACE is founded on simultaneously determining the equilibrium point between multiple experimental and/or computational agents; the returned state description (e.g., atomic coordinates for molecular structure) represents the intersection of each manifold and is not equivalent to the average optimum state for each agent. The moment of inertia, determined directly from microwave spectroscopy measurements, serves to illustrate the mechanism through which MACE evaluations merge experimental and quantum chemical modeling. MACE results reported combine gradient descent optimization of each ab initio agent with an agent that predicts the chemical structure based on root-mean-square deviation of the predicted inertia tensor with experimentally measured moments of inertia. Successful model fusion for several small molecules was achieved as well as the larger molecule solketal. Fusing a model of moment of inertia, an underdetermined predictor of structure, with low cost computational methods yielded structure determination performance comparable to standard computational methods such as MP2/cc-pVTZ and greater agreement with experimental observables.

19.
J Cell Biol ; 219(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32311005

ABSTRACT

Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.


Subject(s)
Actin Cytoskeleton/enzymology , Cell Adhesion/genetics , Microtubule-Associated Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction/genetics , Trans-Activators/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Nucleus/metabolism , Gene Expression Profiling , Humans , Integrins/genetics , Integrins/metabolism , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Nonmuscle Myosin Type IIB/genetics , Nonmuscle Myosin Type IIB/metabolism , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Proteome/metabolism , RNA, Small Interfering , Rho Guanine Nucleotide Exchange Factors/genetics , Stress Fibers/genetics , Stress Fibers/metabolism , Trans-Activators/genetics , Transcriptome/genetics , Tropomyosin/genetics , Tropomyosin/metabolism , Vinculin/genetics , Vinculin/metabolism
20.
FEBS J ; 287(14): 2961-2978, 2020 07.
Article in English | MEDLINE | ID: mdl-31869496

ABSTRACT

Annexin A6 (AnxA6), a member of the calcium (Ca2+ ) and membrane binding annexins, is known to stabilize and establish the formation of multifactorial signaling complexes. At the plasma membrane, AnxA6 is a scaffold for protein kinase Cα (PKCα) and GTPase-activating protein p120GAP to promote downregulation of epidermal growth factor receptor (EGFR) and Ras/mitogen-activated protein kinase (MAPK) signaling. In human squamous A431 epithelial carcinoma cells, which overexpress EGFR, but lack endogenous AnxA6, restoration of AnxA6 expression (A431-A6) promotes PKCα-mediated threonine 654 (T654)-EGFR phosphorylation, which inhibits EGFR tyrosine kinase activity. This is associated with reduced A431-A6 cell growth, but also decreased migration and invasion in wound healing, matrigel, and organotypic matrices. Here, we show that A431-A6 cells display reduced EGFR activity in vivo, with xenograft analysis identifying increased pT654-EGFR levels, but reduced tyrosine EGFR phosphorylation compared to controls. In contrast, PKCα depletion in A431-A6 tumors is associated with strongly reduced pT654 EGFR levels, yet increased EGFR tyrosine phosphorylation and MAPK activity. Moreover, tyrosine kinase inhibitors (TKIs; gefitinib, erlotinib) more effectively inhibit cell viability, clonogenic growth, and wound healing of A431-A6 cells compared to controls. Likewise, the ability of AnxA6 to inhibit A431 motility and invasiveness strongly improves TKI efficacy in matrigel invasion assays. This correlates with a greatly reduced invasion of the surrounding matrix of TKI-treated A431-A6 when cultured in 3D spheroids. Altogether, these findings implicate that elevated AnxA6 scaffold levels contribute to improve TKI-mediated inhibition of growth and migration, but also invasive properties in EGFR overexpressing human squamous epithelial carcinoma.


Subject(s)
Annexin A6/metabolism , Carcinoma, Squamous Cell/drug therapy , Cell Movement , Gene Expression Regulation, Neoplastic , Neoplasms, Glandular and Epithelial/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Annexin A6/genetics , Apoptosis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Mice , Neoplasm Invasiveness , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Phosphorylation , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...