Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 29(3): 4105-4123, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33770997

ABSTRACT

A pressure sensor specified for aerodynamic applications and based on optical fibre strain sensors mounted on a circular glass fibre reinforced polymer membrane is presented. The use of two fibre optic strain sensing technologies is explored, the novel intrinsic fibre segment interferometry (FSI) approach and fibre Bragg gratings (FBGs), with the use of FSI shown to offer a pressure resolution that is 15 times larger than that achieved using an FBG. A number of design and fabrication issues are considered, including the position of the fibres relative to the neutral axis of the membrane and the influence of the membrane support structure on the thermal and pressure sensitivities of the sensor, with particular regards to pressure and temperature discrimination.

2.
Sensors (Basel) ; 19(10)2019 May 17.
Article in English | MEDLINE | ID: mdl-31109017

ABSTRACT

The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer benefits when measuring physical parameters such as strain and temperature. A review of the basic sensing platforms implemented using tapered optical fibres and their application for development of fibre-optic physical, chemical and bio-sensors is presented.

3.
Sensors (Basel) ; 17(2)2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28208691

ABSTRACT

A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4]) or p-sulphanato calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH) and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006) was used to test the LPG sensor performance.

4.
Opt Express ; 24(20): 22345-22356, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828306

ABSTRACT

The central wavelengths of the resonance bands are critical aspect of the performance of long period gratings (LPGs) as sensors, particularly for devices designed to operate near the phase matching turning point (PMTP), where the sensitivity to measurements can vary rapidly. Generally, LPGs are characterized by their period, but the amplitude of the amplitude of the index modulation is also an important factor in determining the wavelengths of the resonance bands. Variations in fabrication between LPG sensors can increase or decrease the sensitivity of the LPG to strain, temperature or surrounding refractive index. Here, the technique of overwritten UV laser fabrication is demonstrated. It is shown that, on repeated overwriting, the resonance bands of an LPG exhibit significant wavelength shift, which can be monitored and which can be used to tune the resonance bands to the desired wavelengths. This technique is applied to periods in the range 100 to 200 µm, showing the cycle-to-cycle evolution of the resonance bands near the PMTPs of a number of cladding modes. The use of online monitoring is shown to reduce the resonance band sensor-to-sensor central wavelength variation from 10 nm to 3 nm.

5.
Appl Opt ; 54(28): 8531-6, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26479631

ABSTRACT

The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 µm and with waist lengths of 20 mm using single-mode SMF-28 fiber.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Fibers , Optics and Photonics , Biosensing Techniques/methods , Equipment Design , Fiber Optic Technology/methods , Hot Temperature , Infrared Rays , Materials Testing , Temperature
6.
Appl Opt ; 53(20): 4363-74, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25090054

ABSTRACT

A new method of acquiring simultaneously the signal and reference channels used for interferometric planar Doppler velocimetry is proposed and demonstrated. The technique uses frequency division multiplexing (FDM) to facilitate the capture of the requisite images on a single camera, and is suitable for time-averaged flow measurements. Furthermore, the approach has the potential to be expanded to allow the multiplexing of additional measurement channels for multicomponent velocity measurement. The use of FDM for interferometric referencing is demonstrated experimentally with measurements of a single velocity component of a seeded axisymmetric air jet. The expansion of the technique to include multiple velocity components was then investigated theoretically and experimentally to account for bandwidth, crosstalk, and dynamic range limitations. The technique offers reduced camera noise, automatic background light suppression, and crosstalk levels of typically <10%. Furthermore, as this crosstalk is dependent upon the channel modulations applied, it can be corrected for in postprocessing.

7.
Appl Opt ; 53(21): 4669-74, 2014 Jul 20.
Article in English | MEDLINE | ID: mdl-25090202

ABSTRACT

It is known that optical fiber long period gratings (LPGs) exhibit their highest sensitivity to environmental perturbation when the period is such that the phase matching condition is satisfied at its turning point. The reproducible fabrication of LPGs with parameters satisfying this condition requires high resolution control over the properties of the grating. The performance of an LPG fabrication system based on the point-by-point UV exposure approach is analyzed in this paper, and the control of factors influencing reproducibility, including period, duty cycle, and the environment in which the device is fabricated, is explored.

8.
Opt Express ; 22(7): 8012-23, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718176

ABSTRACT

An optical fibre chemical sensor that is insensitive to interfering parameters including temperature and surrounding refractive index is described. The sensor is based upon a Mach-Zehnder interferometer formed by a pair of identical cascaded long period gratings (LPGs), with the entire device coated with a mesoporous coating of silica nanoparticles. A functional material is infused only into the coating over the section of optical fibre separating the LPGs. The transmission spectrum of the device consists of a channeled spectrum arising from interference of the core and cladding modes within the envelope of the LPG resonance band. Parameters such as temperature, strain and surrounding refractive perturb the entire device, causing the phase of the channeled spectrum and the central wavelength of the envelope shift at the same rate. Exposure of the device to the analyte of interest perturbs only the optical characteristics of the section of fibre into which the functional material was infused, thus influencing only the phase of the channeled spectrum. Measurement of the phase of the channeled spectrum relative to the central wavelength of the envelope allows the monitoring of the concentration of the analyte with no interference from other parameters.

9.
Analyst ; 139(9): 2229-36, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24634909

ABSTRACT

An optical fibre long period grating (LPG) sensor modified with molecularly imprinted polymer nanoparticles (nanoMIPs) for the specific detection of antibiotics is presented. The operation of the sensor is based on the measurement of changes in refractive index induced by the interaction of nanoMIPs deposited onto the cladding of the LPG with free vancomycin (VA). The binding of nanoMIPs to vancomycin was characterised by a binding constant of 4.3 ± 0.1 × 10(-8) M. The lowest concentration of analyte measured by the fibre sensor was 10 nM. In addition, the sensor exhibited selectivity, as much smaller responses were obtained for high concentrations (∼700 µM) of other commonly prescribed antibiotics such as amoxicillin, bleomycin and gentamicin. In addition, the response of the sensor was characterised in a complex matrix, porcine plasma, spiked with 10 µM of VA.


Subject(s)
Anti-Bacterial Agents/analysis , Molecular Imprinting , Nanoparticles , Polymers/chemistry , Vancomycin/analysis , Animals , Anti-Bacterial Agents/blood , Limit of Detection , Swine , Vancomycin/blood
10.
Appl Opt ; 52(3): 350-8, 2013 Jan 20.
Article in English | MEDLINE | ID: mdl-23338180

ABSTRACT

A new method of multiplexing the speckle patterns needed in multicomponent digital shearography systems is presented. Frequency-division multiplexing (FDM) of the measurement channels is achieved by recording speckle patterns from objects illuminated by intensity-modulated sources. Each source is modulated at a discrete frequency, which is less than half of the camera frame rate, and a bank of images of the modulated speckle patterns is captured. This allows for pixel-by-pixel Fourier-based extraction of the individual speckle patterns from peaks in the power spectra. The approach is demonstrated with a two-component in-plane shearography instrument.

11.
Opt Express ; 18(12): 13227-38, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588452

ABSTRACT

A novel approach to chemical application of long period grating (LPG) optical fibers was demonstrated, which were modified with a film nanoassembled by the alternate deposition of SiO(2) nanoparticles (SiO(2) NPs) and poly(diallyldimethyl ammonium chloride) (PDDA). Nanopores of the sensor film could be used for sensitive adsorption of chemical species in water, which induced the changes in the refractive index (RI) of the light propagating in the cladding mode of the optical fiber, with a concomitant effect on the transmission spectrum in the LPG region. The prepared fiber sensor was highly sensitive to the change in the RI of the surrounding medium and the response time was very fast within 10 s. In addition, chemical infusion into the film was tested using a porphyrin compound, tetrakis-(4-sulfophenyl)porphine (TSPP), which could be saturated within a few min. The lowest detectable concentration of the TSPP analyte was 10 microM. The TSPP infusion led to the development of well-pronounced dual resonance bands, indicating a large increase in the optical thickness of the film. The RI of the film was dramatically increased from 1.200 to ca. 1.540.

12.
Opt Express ; 15(20): 13096-107, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-19550577

ABSTRACT

The sensitivity of attenuation bands corresponding to the 2(nd) order coupling to cladding modes by a fibre optic long period grating (LPG) to the deposition of nanostructured coatings is investigated and compared with that of the 1(st) order coupling. The experimental observations support previously reported theoretical descriptions of LPGs with nanoscale coatings.

13.
Opt Lett ; 30(17): 2197-9, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16190416

ABSTRACT

The response of the transmission spectrum of cascaded long period gratings (LPGs) to the deposition of nanostructured coatings by use of the Langmuir-Blodgett technique is investigated. The phase of the interference fringes within the LPGs' attenuation bands is shown to be highly sensitive to the optical thickness of the coating, for thicknesses of the order of 100 nm.

14.
Opt Lett ; 27(9): 686-8, 2002 May 01.
Article in English | MEDLINE | ID: mdl-18007899

ABSTRACT

An overlay material was deposited by the Langmuir-Blodgett technique onto a single-mode optical fiber containing a long-period grating. The long-period grating exhibits characteristic attenuation bands in its transmission spectrum whose central wavelengths were observed to depend on the optical thickness of the overlay material, even for materials that have a refractive index higher than that of silica.

SELECTION OF CITATIONS
SEARCH DETAIL
...