Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22281489

ABSTRACT

BackgroundThe impact of COVID-19 in Africa remains poorly defined. We sought to describe trends in hospitalisation due to all medical causes, pneumonia-specific admissions, and inpatient mortality in Kenya before and during the first five waves of the COVID-19 pandemic in Kenya. MethodsWe conducted a hospital-based, multi-site, longitudinal observational study of patients admitted to 13 public referral facilities in Kenya from January 2018 to December 2021. The pre-COVID population included patients admitted before 1 March 2020. We fitted time series models to compare observed and predicted trends for each outcome. To estimate the impact of the COVID-19 pandemic, we calculated incidence rate ratios (IRR) and corresponding 95% confidence intervals (CI) from negative binomial mixed-effects models. ResultsOut of 302,703 patients hospitalised across the 13 surveillance sites (range 11547 to 57011), 117642 (39%) were admitted to adult wards. Compared with the pre-COVID period, hospitalisations declined markedly among adult (IRR 0.68, 95% CI 0.63 to 0.73) and paediatric (IRR 0.67, 95% CI 0.62 to 0.73) patients. Adjusted in-hospital mortality also declined among both adult (IRR 0.83, 95% CI 0.77 to 0.89) and paediatric (IRR 0.85, 95% CI 0.77 to 0.94) admissions. Pneumonia-specific admissions among adults increased during the pandemic (IRR 1.75, 95% CI 1.18 to 2.59). Paediatric pneumonia cases were lower than pre-pandemic levels in the first year of the pandemic and elevated in late 2021 (IRR 0.78, 95% CI 0.51 to 1.20). ConclusionsContrary to initial predictions, the COVID-19 pandemic was associated with lower hospitalisation rates and in-hospital mortality, despite increased pneumonia admissions among adults. These trends were sustained after the withdrawal of containment measures that disrupted essential health services, suggesting a role for additional factors that warrant further investigation.

2.
Front Plant Sci ; 13: 1023571, 2022.
Article in English | MEDLINE | ID: mdl-36684783

ABSTRACT

Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass (Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO2 assimilation ( A n e t ' ) declined from 0.9 mol CO2 m-2 day-1 in early summer to 0.43 mol CO2 m-2 day-1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO2 m-2 day-1 in early summer to 0.39 mol CO2 m-2 day-1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability.

SELECTION OF CITATIONS
SEARCH DETAIL
...