Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-493765

ABSTRACT

We report the engineering and selection of two synthetic proteins - FSR16m and FSR22 - for possible treatment of SARS-CoV-2 infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon and exhibit broad spectrum neutralization of SARS-Cov-2 strains. The IC50 values of FSR16m against authentic B.1.351, B.1.617.2 and BA.1.1 variants are 3.4 ng/mL, 2.2 ng/mL and 7.4 ng/mL, respectively, comparable to currently used therapeutic antibodies. Despite the use of the spike protein from a now historical wild-type virus for design, FSR16m and FSR22 both exhibit increased neutralization against newly-emerged variants of concern (39- to 296-fold) in pseudovirus assays. Cryo-EM structures revealed that these DARPins recognize a region of the receptor binding domain (RBD, residues 455-456, 486-489) overlapping a critical portion of the ACE2-binding surface. K18-hACE2 transgenic mice inoculated with a B.1.617.2 variant and receiving intranasally-administered FSR16m were protected as judged by less weight loss and 10-100-fold reductions in viral burden in the upper and lower respiratory tracts. The strong and broad neutralization potency make FSR16m and FSR22 promising candidates for prevention and treatment of infection by current and potential future strains of SARS-CoV-2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-484787

ABSTRACT

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants1-4, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2). Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human Fc{gamma} R transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-479419

ABSTRACT

The B.1.1.529 Omicron variant jeopardizes vaccines designed with early pandemic spike antigens. Here, we evaluated in mice the protective activity of the Moderna mRNA-1273 vaccine against B.1.1.529 before or after boosting with preclinical mRNA-1273 or mRNA-1273.529, an Omicron-matched vaccine. Whereas two doses of mRNA-1273 vaccine induced high levels of serum neutralizing antibodies against historical WA1/2020 strains, levels were lower against B.1.1.529 and associated with infection and inflammation in the lung. A primary vaccination series with mRNA-1273.529 potently neutralized B.1.1.529 but showed limited inhibition of historical or other SARS-CoV-2 variants. However, boosting with mRNA-1273 or mRNA-1273.529 vaccines increased serum neutralizing titers and protection against B.1.1.529 infection. Nonetheless, the levels of inhibitory antibodies were higher, and viral burden and cytokines in the lung were slightly lower in mice given the Omicron-matched mRNA booster. Thus, in mice, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against B.1.1.529 infection with limited differences in efficacy measured.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-476120

ABSTRACT

The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor- binding domain or a single dominant epitope ( supersite) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS-CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-451375

ABSTRACT

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. One-Sentence SummaryWe designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-441501

ABSTRACT

With the emergence of SARS-CoV-2 variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here we developed a panel of neutralizing anti-SARS-CoV-2 mAbs that bind the receptor binding domain of the spike protein at distinct epitopes and block virus attachment to cells and its receptor, human angiotensin converting enzyme-2 (hACE2). While several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by historical SARS-CoV-2 strains, others induced escape variants in vivo and lost activity against emerging strains. We identified one mAb, SARS2-38, that potently neutralizes all SARS-CoV-2 variants of concern tested and protects mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engages a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of inhibitory antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-436864

ABSTRACT

The emergence of antigenically distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility is a public health threat. Some of these variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies, which principally target the receptor binding domain (RBD) on the virus spike glycoprotein. Here, we describe 2C08, a SARS-CoV-2 mRNA vaccine-induced germinal center B cell-derived human monoclonal antibody that binds to the receptor binding motif within the RBD. 2C08 broadly neutralizes SARS-CoV-2 variants with remarkable potency and reduces lung inflammation, viral load, and morbidity in hamsters challenged with either an ancestral SARS-CoV-2 strain or a recent variant of concern. Clonal analysis identified 2C08-like public clonotypes among B cell clones responding to SARS-CoV-2 infection or vaccination in at least 20 out of 78 individuals. Thus, 2C08-like antibodies can be readily induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern. One Sentence SummaryProtection against SARS-CoV-2 variants by a potently neutralizing vaccine-induced human monoclonal antibody.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-433110

ABSTRACT

Despite the introduction of public health measures and spike protein-based vaccines to mitigate the COVID-19 pandemic, SARS-CoV-2 infections and deaths continue to rise. Previously, we used a structural design approach to develop picomolar range miniproteins targeting the SARS-CoV-2 receptor binding domain. Here, we investigated the capacity of modified versions of one lead binder, LCB1, to protect against SARS-CoV-2-mediated lung disease in human ACE2-expressing transgenic mice. Systemic administration of LCB1-Fc reduced viral burden, diminished immune cell infiltration and inflammation, and completely prevented lung disease and pathology. A single intranasal dose of LCB1v1.3 reduced SARS-CoV-2 infection in the lung even when given as many as five days before or two days after virus inoculation. Importantly, LCB1v1.3 protected in vivo against a historical strain (WA1/2020), an emerging B.1.1.7 strain, and a strain encoding key E484K and N501Y spike protein substitutions. These data support development of LCB1v1.3 for prevention or treatment of SARS-CoV-2 infection.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-428251

ABSTRACT

The deployment of a vaccine that limits transmission and disease likely will be required to end the Coronavirus Disease 2019 (COVID-19) pandemic. We recently described the protective activity of an intranasally-administered chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike (S) protein (ChAd-SARS-CoV-2-S) in the upper and lower respiratory tract of mice expressing the human angiotensin-converting enzyme 2 (ACE2) receptor. Here, we show the immunogenicity and protective efficacy of this vaccine in non-human primates. Rhesus macaques were immunized with ChAd-Control or ChAd-SARS-CoV-2-S and challenged one month later by combined intranasal and intrabronchial routes with SARS-CoV-2. A single intranasal dose of ChAd-SARS-CoV-2-S induced neutralizing antibodies and T cell responses and limited or prevented infection in the upper and lower respiratory tract after SARS-CoV-2 challenge. As this single intranasal dose vaccine confers protection against SARS-CoV-2 in non-human primates, it is a promising candidate for limiting SARS-CoV-2 infection and transmission in humans.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-424554

ABSTRACT

SARS-CoV-2 has caused the global COVID-19 pandemic. Although passively delivered neutralizing antibodies against SARS-CoV-2 show promise in clinical trials, their mechanism of action in vivo is incompletely understood. Here, we define correlates of protection of neutralizing human monoclonal antibodies (mAbs) in SARS-CoV-2-infected animals. Whereas Fc effector functions are dispensable when representative neutralizing mAbs are administered as prophylaxis, they are required for optimal protection as therapy. When given after infection, intact mAbs reduce SARS-CoV-2 burden and lung disease in mice and hamsters better than loss-of-function Fc variant mAbs. Fc engagement of neutralizing antibodies mitigates inflammation and improves respiratory mechanics, and transcriptional profiling suggests these phenotypes are associated with diminished innate immune signaling and preserved tissue repair. Immune cell depletions establish that neutralizing mAbs require monocytes for therapeutic efficacy. Thus, potently neutralizing mAbs require Fc effector functions for maximal therapeutic benefit during therapy to modulate protective immune responses and mitigate lung disease.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-408823

ABSTRACT

The development of an effective vaccine against SARS-CoV-2, the etiologic agent of COVID-19, is a global priority. Here, we compared the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in Golden Syrian hamsters. While immunization with ChAd-SARS-CoV-2-S induced robust spike protein specific antibodies capable or neutralizing the virus, antibody levels in serum were higher in hamsters immunized by an intranasal compared to intramuscular route. Accordingly, ChAd-SARS-CoV-2-S immunized hamsters were protected against a challenge with a high dose of SARS-CoV-2. After challenge, ChAd-SARS-CoV-2-S-immunized hamsters had less weight loss and showed reductions in viral RNA and infectious virus titer in both nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-Control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provided superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.

12.
Preprint in English | bioRxiv | ID: ppbiorxiv-362848

ABSTRACT

Neutralizing antibodies (nAbs) hold promise as effective therapeutics against COVID-19. Here, we describe protein engineering and modular design principles that have led to the development of synthetic bivalent and tetravalent nAbs against SARS-CoV-2. The best nAb targets the host receptor binding site of the viral S-protein and its tetravalent versions can block entry with a potency that exceeds the bivalent nAbs by an order of magnitude. Structural studies show that both the bivalent and tetravalent nAbs can make multivalent interactions with a single S-protein trimer, observations consistent with the avidity and potency of these molecules. Significantly, we show that the tetravalent nAbs show much increased tolerance to potential virus escape mutants. Bivalent and tetravalent nAbs can be produced at large-scale and are as stable and specific as approved antibody drugs. Our results provide a general framework for developing potent antiviral therapies against COVID-19 and related viral threats, and our strategy can be readily applied to any antibody drug currently in development.

13.
Preprint in English | bioRxiv | ID: ppbiorxiv-312165

ABSTRACT

Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-234914

ABSTRACT

We used two approaches to design proteins with shape and chemical complementarity to the receptor binding domain (RBD) of SARS-CoV-2 Spike protein near the binding site for the human ACE2 receptor. Scaffolds were built around an ACE2 helix that interacts with the RBD, or de novo designed scaffolds were docked against the RBD to identify new binding modes. In both cases, designed sequences were optimized first in silico and then experimentally for target binding, folding and stability. Nine designs bound the RBD with affinities ranging from 100pM to 10nM, and blocked bona fide SARS-CoV-2 infection of Vero E6 cells with IC50 values ranging from 35 pM to 35 nM; the most potent of these -- 56 and 64 residue hyperstable proteins made using the second approach -- are roughly six times more potent on a per mass basis (IC50 ~ 0.23 ng/ml) than the best monoclonal antibodies reported thus far. Cryo-electron microscopy structures of the SARS-CoV-2 spike ectodomain trimer in complex with the two most potent minibinders show that the structures of the designs and their binding interactions with the RBD are nearly identical to the computational models, and that all three RBDs in a single Spike protein can be engaged simultaneously. These hyperstable minibinders provide promising starting points for new SARS-CoV-2 therapeutics, and illustrate the power of computational protein design for rapidly generating potential therapeutic candidates against pandemic threats.

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-205088

ABSTRACT

The Coronavirus Disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of systemic and mucosal IgA and T cell responses, completely prevents SARS-CoV-2 infection in the upper and lower respiratory tracts, and likely confers sterilizing immunity in most animals. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission, and curtailing pandemic spread.

16.
Preprint in English | bioRxiv | ID: ppbiorxiv-196386

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections and hundreds of thousands of deaths. Accordingly, an effective vaccine is of critical importance in mitigating coronavirus induced disease 2019 (COVID-19) and curtailing the pandemic. We developed a replication-competent vesicular stomatitis virus (VSV)-based vaccine by introducing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high titers of antibodies that neutralize SARS-CoV-2 infection and target the receptor binding domain that engages human angiotensin converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice expressing human ACE2 and immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung indicating protection against pneumonia. Finally, passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals protects naive mice from SARS-CoV-2 challenge. These data support development of VSV-eGFP-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.

17.
Preprint in English | bioRxiv | ID: ppbiorxiv-182220

ABSTRACT

Introduction Commercially available SARS-CoV-2 serological assays based on different viral antigens have been approved for the qualitative determination of anti-SARS-CoV-2 antibodies. However, there is limited published data associating the results from commercial assays with neutralizing antibodies.Methods 67 specimens from 48 patients with PCR-confirmed COVID-19 and a positive result by the Roche Elecsys SARS-CoV-2, Abbott SARS-CoV-2 IgG, or EUROIMMUN SARS-CoV-2 IgG assays and 5 control specimens were analyzed for the presence of neutralizing antibodies to SARS-CoV-2. Correlation, concordance, positive percent agreement (PPA), and negative percent agreement (NPA) were calculated at several cutoffs. Results were compared in patients categorized by clinical outcomes.Results The correlation between SARS-CoV-2 neutralizing titer (EC50) and the Roche, Abbott, and EUROIMMUN assays was 0.29, 0.47, and 0.46 respectively. At an EC50 of 1:32, the concordance kappa with Roche was 0.49 (95% CI; 0.23-0.75), with Abbott was 0.52 (0.28-0.77), and with EUROIMMUN was 0.61 (0.4-0.82). At the same neutralizing titer, the PPA and NPA for the Roche was 100% (94-100) & 56% (30-80); Abbott was 96% (88-99) & 69% (44-86); and EUROIMMUN was 91% (80-96) & 81% (57-93) for distinguishing neutralizing antibodies. Patients who died, were intubated, or had a cardiac injury from COVID-19 infection had significantly higher neutralizing titers relative to those with mild symptoms.Conclusion COVID-19 patients generate an antibody response to multiple viral proteins such that the calibrator ratios on the Roche, Abbott, and EUROIMMUN assays are all associated with SARS-CoV-2 neutralization. Nevertheless, commercial serological assays have poor NPA for SARS-CoV-2 neutralization, making them imperfect proxies for neutralization.Competing Interest StatementThe authors have declared no competing interest.View Full Text

18.
Preprint in English | bioRxiv | ID: ppbiorxiv-141077

ABSTRACT

Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and provide the molecular basis for its possible therapeutic development.

19.
Preprint in English | bioRxiv | ID: ppbiorxiv-111005

ABSTRACT

The COVID-19 pandemic is a major threat to global health for which there are only limited medical countermeasures, and we lack a thorough understanding of mechanisms of humoral immunity1,2. From a panel of monoclonal antibodies (mAbs) targeting the spike (S) glycoprotein isolated from the B cells of infected subjects, we identified several mAbs that exhibited potent neutralizing activity with IC50 values as low as 0.9 or 15 ng/mL in pseudovirus or wild-type (wt) SARS-CoV-2 neutralization tests, respectively. The most potent mAbs fully block the receptor-binding domain of S (SRBD) from interacting with human ACE2. Competition-binding, structural, and functional studies allowed clustering of the mAbs into defined classes recognizing distinct epitopes within major antigenic sites on the SRBD. Electron microscopy studies revealed that these mAbs recognize distinct conformational states of trimeric S protein. Potent neutralizing mAbs recognizing unique sites, COV2-2196 and COV2-2130, bound simultaneously to S and synergistically neutralized authentic SARS-CoV-2 virus. In two murine models of SARS-CoV-2 infection, passive transfer of either COV2-2916 or COV2-2130 alone or a combination of both mAbs protected mice from severe weight loss and reduced viral burden and inflammation in the lung. These results identify protective epitopes on the SRBD and provide a structure-based framework for rational vaccine design and the selection of robust immunotherapeutic cocktails.

20.
Preprint in English | bioRxiv | ID: ppbiorxiv-102038

ABSTRACT

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune {gamma}-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

SELECTION OF CITATIONS
SEARCH DETAIL
...