Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-497816

ABSTRACT

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, at the outset of the COVID-19 pandemic there were no well-validated inhibitors for this protein nor, indeed, the macrodomain enzyme family, making this target a pharmacological orphan. Here, we report the structure-based discovery and development of several different chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution protein crystallography, and binding evaluation. Potent scaffolds were designed with in silico fragment linkage and by ultra-large library docking of over 450 million molecules. Both techniques leverage the computational exploration of tangible chemical space and are applicable to other pharmacological orphans. Overall, 160 ligands in 119 different scaffolds were discovered, and 152 Mac1-ligand complex crystal structures were determined, typically to 1 [A] resolution or better. Our analyses discovered selective and cell-permeable molecules, unexpected ligand-mediated protein dynamics within the active site, and key inhibitor motifs that will template future drug development against Mac1. Significance StatementSARS-CoV-2 encodes a viral macrodomain protein (Mac1) that hydrolyzes ribo-adenylate marks on viral proteins, disrupting the innate immune response to the virus. Catalytic mutations in the enzyme make the related SARS-1 virus less pathogenic and non-lethal in animals, suggesting that Mac1 will be a good antiviral target. However, no potent inhibitors of this protein class have been described, and pharmacologically the enzyme remains an orphan. Here, we computationally designed potent inhibitors of Mac1, determining 150 inhibitor-enzyme structures to ultra-high resolution by crystallography. In silico fragment linking and molecular docking of > 450 million virtual compounds led to inhibitors with submicromolar activity. These molecules may template future drug discovery efforts against this crucial but understudied viral target.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-479477

ABSTRACT

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-443524

ABSTRACT

The SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding. Mapping emerging mutations from variants of SARS-CoV-2 on the resulting structure shows potential host-Nsp2 interaction regions. Using structural analysis together with affinity tagged purification mass spectrometry experiments, we identify Nsp2 mutants that are unable to interact with the actin-nucleation-promoting WASH protein complex or with GIGYF2, an inhibitor of translation initiation and modulator of ribosome-associated quality control. Our work suggests a potential role of Nsp2 in linking viral transcription within the viral replication-transcription complexes (RTC) to the translation initiation of the viral message. Collectively, the structure reported here, combined with mutant interaction mapping, provides a foundation for functional studies of this evolutionary conserved coronavirus protein and may assist future drug design.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-393405

ABSTRACT

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

5.
David E. Gordon; Gwendolyn M. Jang; Mehdi Bouhaddou; Jiewei Xu; Kirsten Obernier; Jeffrey Z. Guo; Danielle L. Swaney; Tia A. Tummino; Ruth Huttenhain; Robyn M. Kaake; Alicia L. Richards; Beril Tutuncuoglu; Helene Foussard; Jyoti Batra; Kelsey Haas; Maya Modak; Minkyu Kim; Paige Haas; Benjamin J. Polacco; Hannes Braberg; Jacqueline M. Fabius; Manon Eckhardt; Margaret Soucheray; Melanie J. Bennett; Merve Cakir; Michael J. McGregor; Qiongyu Li; Zun Zar Chi Naing; Yuan Zhou; Shiming Peng; Ilsa T. Kirby; James E. Melnyk; John S Chorba; Kevin Lou; Shizhong A. Dai; Wenqi Shen; Ying Shi; Ziyang Zhang; Inigo Barrio-Hernandez; Danish Memon; Claudia Hernandez-Armenta; Christopher J.P. Mathy; Tina Perica; Kala B. Pilla; Sai J. Ganesan; Daniel J. Saltzberg; Rakesh Ramachandran; Xi Liu; Sara B. Rosenthal; Lorenzo Calviello; Srivats Venkataramanan; Jose Liboy-Lugo; Yizhu Lin; Stephanie A. Wankowicz; Markus Bohn; Phillip P. Sharp; Raphael Trenker; Janet M. Young; Devin A. Cavero; Joseph Hiatt; Theo Roth; Ujjwal Rathore; Advait Subramanian; Julia Noack; Mathieu Hubert; Ferdinand Roesch; Thomas Vallet; Björn Meyer; Kris M. White; Lisa Miorin; Oren S. Rosenberg; Kliment A. Verba; David Agard; Melanie Ott; Michael Emerman; Davide Ruggero; Adolfo Garcí-Sastre; Natalia Jura; Mark von Zastrow; Jack Taunton; Alan Ashworth; Olivier Schwartz; Marco Vignuzzi; Shaeri Mukherjee; Matt Jacobson; Harmit S. Malik; Danica G Fujimori; Trey Ideker; Charles S Craik; Stephen Floor; James S. Fraser; John Gross; Andrej Sali; Tanja Kortemme; Pedro Beltrao; Kevan Shokat; Brian K. Shoichet; Nevan J. Krogan.
Preprint in English | bioRxiv | ID: ppbiorxiv-002386

ABSTRACT

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...