Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255853

ABSTRACT

Activity-regulated cytoskeleton-associated protein (Arc) plays essential roles in diverse forms of synaptic plasticity, including long-term potentiation (LTP), long-term depression (LTD), and homeostatic plasticity. In addition, it assembles into virus-like particles that may deliver mRNAs and/or other cargo between neurons and neighboring cells. Considering this broad range of activities, it is not surprising that Arc is subject to regulation by multiple types of post-translational modification, including phosphorylation, palmitoylation, SUMOylation, ubiquitylation, and acetylation. Here we explore the potential regulatory role of Arc phosphorylation by protein kinase C (PKC), which occurs on serines 84 and 90 within an α-helical segment in the N-terminal domain. To mimic the effect of PKC phosphorylation, we mutated the two serines to negatively charged glutamic acid. A consequence of introducing these phosphomimetic mutations is the almost complete inhibition of Arc palmitoylation, which occurs on nearby cysteines and contributes to synaptic weakening. The mutations also inhibit the binding of nucleic acids and destabilize high-order Arc oligomers. Thus, PKC phosphorylation of Arc may limit the full expression of LTD and may suppress the interneuronal transport of mRNAs.


Subject(s)
Lipoylation , Nucleic Acids , Phosphorylation , Protein Processing, Post-Translational , Protein Kinase C/genetics
2.
Front Synaptic Neurosci ; 14: 926570, 2022.
Article in English | MEDLINE | ID: mdl-35965782

ABSTRACT

Calmodulin kinase-like vesicle-associated (CaMKv), a pseudokinase belonging to the Ca2+/calmodulin-dependent kinase family, is expressed predominantly in brain and neural tissue. It may function in synaptic strengthening during spatial learning by promoting the stabilization and enrichment of dendritic spines. At present, almost nothing is known regarding CaMKv structure and regulation. In this study we confirm prior proteomic analyses demonstrating that CaMKv is palmitoylated on Cys5. Wild-type CaMKv is enriched on the plasma membrane, but this enrichment is lost upon mutation of Cys5 to Ser. We further show that CaMKv interacts with another regulator of synaptic plasticity, Arc/Arg3.1, and that the interaction between these two proteins is weakened by mutation of the palmitoylated cysteine in CamKv.

3.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35563654

ABSTRACT

Protein self-assembly is a common feature in biology and is often required for a myriad of fundamental processes, such as enzyme activity, signal transduction, and transport of solutes across membranes, among others. There are several techniques to find and assess homo-oligomer formation in proteins. Naturally, all these methods have their limitations, meaning that at least two or more different approaches are needed to characterize a case study. Herein, we present a new method to study protein associations using intrinsic fluorescence lifetime with phasors. In this case, the method is applied to determine the equilibrium dissociation constant (KD) of human peroxiredoxin 1 (hPrx1), an efficient cysteine-dependent peroxidase, that has a quaternary structure comprised of five head-to-tail homodimers non-covalently arranged in a decamer. The hPrx1 oligomeric state not only affects its activity but also its association with other proteins. The excited state lifetime of hPrx1 has distinct values at high and low concentrations, suggesting the presence of two different species. Phasor analysis of hPrx1 emission lifetime allowed for the identification and quantification of hPrx1 decamers, dimers, and their mixture at diverse protein concentrations. Using phasor algebra, we calculated the fraction of hPrx1 decamers at different concentrations and obtained KD (1.1 × 10-24 M4) and C0.5 (1.36 µM) values for the decamer-dimer equilibrium. The results were validated and compared with size exclusion chromatography. In addition, spectral phasors provided similar results despite the small differences in emission spectra as a function of hPrx1 concentration. The phasor approach was shown to be a highly sensitive and quantitative method to assess protein oligomerization and an attractive addition to the biophysicist's toolkit.


Subject(s)
Peroxidase , Peroxiredoxins , Cysteine , Fluorescence , Humans , Peroxiredoxins/metabolism
4.
ACS Chem Neurosci ; 13(7): 876-882, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35319179

ABSTRACT

Arc, also known as Arg3.1, is an activity-dependent immediate-early gene product that plays essential roles in memory consolidation. A pool of Arc is located in the postsynaptic cytoplasm, where it promotes AMPA receptor endocytosis and cytoskeletal remodeling. However, Arc is also found in the nucleus, with a major portion being associated with promyelocytic leukemia nuclear bodies (PML-NBs). Nuclear Arc has been implicated in epigenetic control of gene transcription associated with learning and memory. In this study, we use a battery of fluorescence nanoimaging approaches to characterize the behavior of Arc ectopically expressed in heterologous cells. Our results indicate that in the cytoplasm, Arc exists predominantly as monomers and dimers associated with slowly diffusing particles. In contrast, nuclear Arc is almost exclusively monomeric and displays a higher diffusivity than cytoplasmic Arc. We further show that Arc moves freely and rapidly between PML-NBs and the nucleoplasm and that its movement within PML-NBs is relatively unobstructed.


Subject(s)
Cytoskeletal Proteins , Nerve Tissue Proteins , Cell Nucleus/metabolism , Cytoplasm/metabolism , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, AMPA
5.
Front Cell Neurosci ; 15: 745940, 2021.
Article in English | MEDLINE | ID: mdl-34744632

ABSTRACT

Mutations in the gene encoding dynamin 2 (DNM2), a GTPase that catalyzes membrane constriction and fission, are associated with two autosomal-dominant motor disorders, Charcot-Marie-Tooth disease (CMT) and centronuclear myopathy (CNM), which affect nerve and muscle, respectively. Many of these mutations affect the pleckstrin homology domain of DNM2, yet there is almost no overlap between the sets of mutations that cause CMT or CNM. A subset of CMT-linked mutations inhibit the interaction of DNM2 with phosphatidylinositol (4,5) bisphosphate, which is essential for DNM2 function in endocytosis. In contrast, CNM-linked mutations inhibit intramolecular interactions that normally suppress dynamin self-assembly and GTPase activation. Hence, CNM-linked DNM2 mutants form abnormally stable polymers and express enhanced assembly-dependent GTPase activation. These distinct effects of CMT and CNM mutations are consistent with current findings that DNM2-dependent CMT and CNM are loss-of-function and gain-of-function diseases, respectively. In this study, we present evidence that at least one CMT-causing DNM2 mutant (ΔDEE; lacking residues 555DEE557) forms polymers that, like the CNM mutants, are resistant to disassembly and display enhanced GTPase activation. We further show that the ΔDEE mutant undergoes 2-3-fold higher levels of tyrosine phosphorylation than wild-type DNM2. These results suggest that molecular mechanisms underlying the absence of pathogenic overlap between DNM2-dependent CMT and CNM should be re-examined.

6.
Annu Rev Biophys ; 50: 575-593, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33957055

ABSTRACT

The phasor approach to fluorescence lifetime imaging has become a common method to analyze complicated fluorescence signals from biological samples. The appeal of the phasor representation of complex fluorescence decays in biological systems is that a visual representation of the decay of entire cells or tissues can be used to easily interpret fundamental biological states related to metabolism and oxidative stress. Phenotyping based on autofluorescence provides new avenues for disease characterization and diagnostics. The phasor approach is a transformation of complex fluorescence decays that does not use fits to model decays and therefore has the same information content as the original data. The phasor plot is unique for a given system, is highly reproducible, and provides a robust method to evaluate the existence of molecular interactions such as Förster resonance energy transfer or the response of ion indicators. Recent advances permitquantification of multiple components from phasor plots in fluorescence lifetime imaging microscopy, which is not presently possible using data fitting methods, especially in biological systems.


Subject(s)
Fluorescence , Fluorescence Resonance Energy Transfer/methods , Humans , Microscopy, Fluorescence/methods , Optical Imaging
7.
Sci Rep ; 11(1): 7832, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33837264

ABSTRACT

Clostridium botulinum neurotoxin serotype A (BoNT/A) is a potent neurotoxin that serves as an effective therapeutic for several neuromuscular disorders via induction of temporary muscular paralysis. Specific binding and internalization of BoNT/A into neuronal cells is mediated by its binding domain (HC/A), which binds to gangliosides, including GT1b, and protein cell surface receptors, including SV2. Previously, recombinant HC/A was also shown to bind to FGFR3. As FGFR dimerization is an indirect measure of ligand-receptor binding, an FCS & TIRF receptor dimerization assay was developed to measure rHC/A-induced dimerization of fluorescently tagged FGFR subtypes (FGFR1-3) in cells. rHC/A dimerized FGFR subtypes in the rank order FGFR3c (EC50 ≈ 27 nM) > FGFR2b (EC50 ≈ 70 nM) > FGFR1c (EC50 ≈ 163 nM); rHC/A dimerized FGFR3c with similar potency as the native FGFR3c ligand, FGF9 (EC50 ≈ 18 nM). Mutating the ganglioside binding site in HC/A, or removal of GT1b from the media, resulted in decreased dimerization. Interestingly, reduced dimerization was also observed with an SV2 mutant variant of HC/A. Overall, the results suggest that the FCS & TIRF receptor dimerization assay can assess FGFR dimerization with known and novel ligands and support a model wherein HC/A, either directly or indirectly, interacts with FGFRs and induces receptor dimerization.


Subject(s)
Botulinum Toxins, Type A/metabolism , Clostridium botulinum/enzymology , Neurotoxins/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Serogroup , Signal Transduction/genetics , Animals , Binding Sites , Botulinum Toxins, Type A/chemistry , Cell Membrane/metabolism , Dimerization , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gangliosides/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurotoxins/chemistry , PC12 Cells , Protein Binding , Protein Domains , Rats , Receptors, Cell Surface/metabolism , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/genetics , Transfection
8.
Front Mol Biosci ; 8: 630625, 2021.
Article in English | MEDLINE | ID: mdl-33763452

ABSTRACT

The activity-regulated cytoskeletal-associated protein (Arc, also known as Arg3.1) is an immediate early gene product induced by activity/experience and required for multiple modes of synaptic plasticity. Both long-term potentiation (LTP) and long-term depression (LTD) are impaired upon Arc deletion, as well as the ability to form long-term spatial, taste and fear memories. The best-characterized cellular function of Arc is enhancement of the endocytic internalization of AMPA receptors (AMPARs) in dendritic spines. Solution of the crystal structure of a C-terminal segment of Arc revealed a striking similarity to the capsid domain of HIV Gag. It was subsequently shown that Arc assembles into viral capsid-like structures that enclose Arc mRNA, are released into the extracellular space, and are internalized by neighboring cells. Thus, Arc is unique in participating in plasma membrane budding both into and out of the cell. In this report we study the interaction of Arc with membranes using giant unilamellar vesicles (GUVs). Using the fluorescent lipid probe LAURDAN, we find that Arc promotes the formation of smaller vesicles that penetrate into the GUV interior. Our results suggest that Arc induces negative membrane curvature and may therefore facilitate the formation of mRNA-containing extracellular vesicles from the plasma membrane.

9.
Acc Chem Res ; 54(4): 976-987, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33513300

ABSTRACT

Any chemist studying the interaction of molecules with lipid assemblies will eventually be confronted by the topic of membrane bilayer heterogeneity and may ultimately encounter the heterogeneity of natural membranes. In artificial bilayers, heterogeneity is defined by phase segregation that can be in the nano- and micrometer range. In biological bilayers, heterogeneity is considered in the context of small (10-200 nm) sterol and sphingolipid-enriched heterogeneous and highly dynamic domains. Several techniques can be used to assess membrane heterogeneity in living systems. Our approach is to use a fluorescent reporter molecule immersed in the bilayer, which, by changes in its spectroscopic properties, senses physical-chemistry aspects of the membrane. This dye in combination with microscopy and fluctuation techniques can give information about membrane heterogeneity at different temporal and spatial levels: going from average fluidity to number and diffusion coefficient of nanodomains. LAURDAN (6-dodecanoyl-2-(dimethylamino) naphthalene), is a fluorescent probe designed and synthesized in 1979 by Gregorio Weber with the purpose to study the phenomenon of dipolar relaxation. The spectral displacement observed when LAURDAN is either in fluid or gel phase permitted the use of the technique in the field of membrane dynamics. The quantitation of the spectral displacement was first addressed by the generalized polarization (GP) function in the cuvette, a ratio of the difference in intensity at two wavelengths divided by their sum. In 1997, GP measurements were done for the first time in the microscope, adding to the technique the spatial resolution and allowing the visualization of lipid segregation both in liposomes and cells. A new prospective to the membrane heterogeneity was obtained when LAURDAN fluorescent lifetime measurements were done in the microscope. Two channel lifetime imaging provides information on membrane polarity and dipole relaxation (the two parameters responsible for the spectral shift of LAURDAN), and the application of phasor analysis allows pixel by pixel understanding of these two parameters in the membrane. To increase temporal resolution, LAURDAN GP was combined with fluctuation correlation spectroscopy (FCS) and the motility of nanometric highly packed structures in biological membranes was registered. Lately the application of phasor analysis to spectral images from membranes labeled with LAURDAN allows us to study the full spectra pixel by pixel in an image. All these methodologies, using LAURDAN, offer the possibility to address different properties of membranes depending on the question being asked. In this Account, we will focus on the principles, advantages, and limitations of different approaches to orient the reader to select the most appropriate technique for their research.


Subject(s)
2-Naphthylamine/analogs & derivatives , Cell Membrane/chemistry , Fluorescent Dyes/chemistry , Laurates/chemistry , Microscopy, Fluorescence , 2-Naphthylamine/chemistry , Animals , Cell Membrane/drug effects , HEK293 Cells , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Hydrogen Peroxide/pharmacology , Liposomes/chemistry , Mice , NIH 3T3 Cells , Polymorphism, Single Nucleotide , Spectrometry, Fluorescence
10.
Article in English | MEDLINE | ID: mdl-32655390

ABSTRACT

Activity-responsive changes in the actin cytoskeleton are required for the biogenesis, motility, and remodeling of dendritic spines. These changes are governed by proteins that regulate the polymerization, depolymerization, bundling, and branching of actin filaments. Thus, processes that have been extensively characterized in the context of non-neuronal cell shape change and migration are also critical for learning and memory. In this review article, we highlight actin regulatory proteins that associate, at least transiently, with the dendritic plasma membrane. All of these proteins have been shown, either in directed studies or in high-throughput screens, to undergo palmitoylation, a potentially reversible, and stimulus-dependent cysteine modification. Palmitoylation increases the affinity of peripheral proteins for the membrane bilayer and contributes to their subcellular localization and recruitment to cholesterol-rich membrane microdomains.

11.
Methods Appl Fluoresc ; 8(3): 035001, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32235070

ABSTRACT

In several cellular systems, the phasor FLIM approach has shown the existence of more than 2 components in the same pixel, a typical example being free and bound NADH. In order to properly quantify the concentrations and the spatial distributions of fluorescence components associated with different molecular species we developed a general method to resolve 3 and 4 components in the same pixel using the phasor approach. The method is based on the law of linear combination of components valid after transformation of the decay curves to phasors for each pixel in the image. In principle, the linear combination rule is valid for an arbitrary number of components. For 3 components we use only the phasor position for the first harmonic, which has a small error, while for 4 components we need the phasor location at higher harmonics that have intrinsically more noise. As a result of the noise in the higher harmonics, caused by limited photon statistics, we are able to use linear algebra to resolve 4 components given the position of the phasors of 4 independent components in mixtures of dyes and 3 components for dyes in cellular systems.


Subject(s)
Microscopy, Fluorescence/methods , Optical Imaging/methods , Humans
12.
Nat Protoc ; 13(9): 1979-2004, 2018 09.
Article in English | MEDLINE | ID: mdl-30190551

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) is used in diverse disciplines, including biology, chemistry and biophysics, but its use has been limited by the complexity of the data analysis. The phasor approach to FLIM has the potential to markedly reduce this complexity and at the same time provide a powerful visualization of the data content. Phasor plots for fluorescence lifetime analysis were originally developed as a graphical representation of excited-state fluorescence lifetimes for in vitro systems. The method's simple mathematics and specific rules avoid errors and confusion common in the study of complex and heterogeneous fluorescence. In the case of FLIM, the phasor approach has become a powerful method for simple and fit-free analyses of the information contained in the many thousands of pixels constituting an image. At present, the phasor plot is used not only for FLIM, but also for hyperspectral imaging, wherein phasors provide an unprecedented understanding of heterogeneous fluorescence. Undoubtedly, phasor plots will be increasingly important in the future analysis and understanding of FLIM and hyperspectral confocal imaging. This protocol presents the principle of the method and guides users through one of the popular interfaces for FLIM phasor analysis, namely, the SimFCS software. Implementation of the analysis takes only minutes to complete for a dataset containing hundreds of files.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Optical Imaging/methods , Microscopy, Confocal/methods , Software
13.
J Neurochem ; 147(4): 541-556, 2018 11.
Article in English | MEDLINE | ID: mdl-30142705

ABSTRACT

The amyloid aggregation of the presynaptic protein α-synuclein (AS) is pathognomonic of Parkinson's disease and other neurodegenerative disorders. Physiologically, AS contributes to synaptic homeostasis by participating in vesicle maintenance, trafficking, and release. Its avidity for highly curved acidic membranes has been related to the distinct chemistry of the N-terminal amphipathic helix adopted upon binding to appropriated lipid interfaces. Pathologically, AS populate a myriad of toxic aggregates ranging from soluble oligomers to insoluble amyloid fibrils. Different gain-of-toxic function mechanisms are linked to prefibrillar oligomers which are considered as the most neurotoxic species. Here, we investigated if amyloid oligomerization could hamper AS function as a membrane curvature sensor. We used fluorescence correlation spectroscopy to quantitatively evaluate the interaction of oligomeric species, produced using a popular method based on lyophilization and rehydration, to lipid vesicles of different curvatures and compositions. We found that AS oligomerization has a profound impact on protein-lipid interaction, altering binding affinity and/or curvature sensitivity depending on membrane composition. Our work provides novel insights into how the formation of prefibrillar intermediate species could contribute to neurodegeneration due to a loss-of-function mechanism. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Amyloid beta-Peptides/metabolism , Cell Membrane/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Humans , Lipid Bilayers , Nerve Degeneration/pathology , Protein Binding , Protein Conformation , Spectrometry, Fluorescence , Synaptic Vesicles/chemistry , Synaptic Vesicles/ultrastructure , alpha-Synuclein/chemistry , alpha-Synuclein/ultrastructure
14.
Extremophiles ; 22(5): 781-793, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30014242

ABSTRACT

The biotechnological and industrial uses of thermostable and organic solvent-tolerant enzymes are extensive and the investigation of such enzymes from microbiota present in oil reservoirs is a promising approach. Searching sequence databases for esterases from such microbiota, we have identified in silico a potentially secreted esterase from Acetomicrobium hydrogeniformans, named AhEst. The recombinant enzyme was produced in E. coli to be used in biochemical and biophysical characterization studies. AhEst presented hydrolytic activity on short-acyl-chain p-nitrophenyl ester substrates. AhEst activity was high and stable in temperatures up to 75 °C. Interestingly, high salt concentration induced a significant increase of catalytic activity. AhEst still retained ~ 50% of its activity in 30% concentration of several organic solvents. Synchrotron radiation circular dichroism and fluorescence spectroscopies confirmed that AhEst displays high structural stability in extreme conditions of temperature, salinity, and organic solvents. The enzyme is a good emulsifier agent and is able to partially reverse the wettability of an oil-wet carbonate substrate, making it of potential interest for use in enhanced oil recovery. All the traits observed in AhEst make it an interesting candidate for many industrial applications, such as those in which a significant hydrolytic activity at high temperatures is required.


Subject(s)
Bacterial Proteins/metabolism , Esterases/metabolism , Extreme Environments , Protein Denaturation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Esterases/chemistry , Esterases/genetics , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salinity , Solvents/chemistry , Substrate Specificity
15.
Methods ; 140-141: 52-61, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29408224

ABSTRACT

In this article, we review the application of fluorescence correlation spectroscopy (FCS) methods to studies on live cells. We begin with a brief overview of the theory underlying FCS, highlighting the type of information obtainable. We then focus on circular scanning FCS. Specifically, we discuss instrumentation and data analysis and offer some considerations regarding sample preparation. Two examples from the literature are discussed in detail. First, we show how this method, coupled with the photon counting histogram analysis, can provide information on yeast ribosomal structures in live cells. The combination of scanning FCS with dual channel detection in the study of lipid domains in live cells is also illustrated.


Subject(s)
2-Naphthylamine/analogs & derivatives , Fluorescence , Intravital Microscopy/methods , Laurates/chemistry , Spectrometry, Fluorescence/methods , 2-Naphthylamine/chemistry , Diffusion , Intravital Microscopy/instrumentation , Membrane Microdomains/metabolism , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Spectrometry, Fluorescence/instrumentation
16.
Biochemistry ; 57(5): 520-524, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29264923

ABSTRACT

Activity-regulated cytoskeletal-associated protein (Arc, also known as activity-regulated gene 3.1 or Arg3.1) is induced in neurons in response to salient experience and neural activity and is necessary for activity-induced forms of synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), cellular substrates of learning and memory. The best-characterized function of Arc is enhancement of the endocytic internalization of AMPA receptors in dendritic spines, a process associated with LTD. Arc has also been implicated in the proteolytic processing of amyloid precursor protein on the surface of endosomes. To mediate these activities, Arc must associate with cellular membranes, but it is unclear whether Arc binds directly to the lipid bilayer or requires protein-protein interactions for membrane recruitment. In this study, we show that Arc associates with pure phospholipid vesicles in vitro and undergoes palmitoylation in neurons, a modification that allows it to insert directly into the hydrophobic core of the bilayer. The palmitoylated cysteines are clustered in a motif, 94CLCRC98, located in the N-terminal half of the protein, which has not yet been structurally characterized. Expression of Arc with three mutated cysteines in that motif cannot support synaptic depression induced by the activity-dependent transcription factor, MEF2 (myocyte enhancer factor 2), in contrast to wild-type Arc. Thus, it appears that palmitoylation regulates at least a subset of Arc functions in synaptic plasticity.


Subject(s)
Cytoskeletal Proteins/metabolism , Lipid Bilayers/metabolism , Lipoylation , Long-Term Synaptic Depression , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , HeLa Cells , Hippocampus/metabolism , Humans , Long-Term Potentiation , Mice , Mice, Inbred C57BL , Neurons/cytology , Palmitates/metabolism , Receptors, AMPA/metabolism
17.
Sci Rep ; 7(1): 9215, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28835608

ABSTRACT

Mammalian cell membranes have different phospholipid composition and cholesterol content, displaying a profile of fluidity that depends on their intracellular location. Among the dyes used in membrane studies, LAURDAN has the advantage to be sensitive to the lipid composition as well as to membrane fluidity. The LAURDAN spectrum is sensitive to the lipid composition and dipolar relaxation arising from water penetration, but disentangling lipid composition from membrane fluidity can be obtained if time resolved spectra could be measured at each cell location. Here we describe a method in which spectral and lifetime information obtained in different measurements at the same plane in a cell are used in the phasor plot providing a solution to analyze multiple lifetime or spectral data through a common visualization approach. We exploit a property of phasor plots based on the reciprocal role of the phasor plot and the image. In the phasor analysis each pixel of the image is associated with a phasor and each phasor maps to pixels and features in the image. In this paper the lifetime and spectral fluorescence data are used simultaneously to determine the contribution of polarity and dipolar relaxations of LAURDAN in each pixel of an image.


Subject(s)
Cell Membrane/chemistry , Spectrum Analysis/methods , Animals , Lipids/chemistry , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Spectrometry, Fluorescence
18.
J Cell Biochem ; 118(9): 2941-2949, 2017 09.
Article in English | MEDLINE | ID: mdl-28230328

ABSTRACT

We have previously shown that the DNA replication licensing factor ORC4 forms a cage around the chromosomes that are extruded in both polar bodies during murine oogenesis, but not around the chromosomes that are retained in the oocyte or around the sperm chromatin. We termed this structure the ORC4 cage. Here, we tested whether the formation of the ORC4 cage is necessary for polar body extrusion (PBE). We first experimentally forced oocytes to extrude sperm chromatin as a pseudo-polar body and found that under these conditions the sperm chromatin did become enclosed in an ORC4 cage. Next, we attempted to prevent the formation of the ORC4 cage by injecting peptides that contained sequences of different domains of the ORC4 protein into metaphase II (MII) oocytes just before the cage normally forms. Our rationale was that the ORC4 peptides would block protein-protein interactions required for cage formation. Two out of six tested peptides prevented the ORC4 cage formation and simultaneously inhibited PBE, resulting in the formation of two pronuclei (2 PN) that were retained in the oocyte. Together, these data demonstrate that ORC4 oligomerization is required to form the ORC4 cage and that it is required for PBE. J. Cell. Biochem. 118: 2941-2949, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Meiosis/physiology , Origin Recognition Complex/metabolism , Polar Bodies/metabolism , Protein Multimerization/physiology , Animals , Female , Mice , Origin Recognition Complex/genetics
19.
PLoS One ; 11(6): e0158146, 2016.
Article in English | MEDLINE | ID: mdl-27351338

ABSTRACT

Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/ß protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.


Subject(s)
Bacterial Proteins/metabolism , Esterases/metabolism , Retinal Rod Photoreceptor Cells/enzymology , 1-Propanol/chemistry , Bacterial Proteins/chemistry , Enzyme Stability , Esterases/chemistry , Ethanol/chemistry , Hydrogen-Ion Concentration , Protein Folding , Substrate Specificity , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...