Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 575(7784): 699-703, 2019 11.
Article in English | MEDLINE | ID: mdl-31748743

ABSTRACT

Oncogenes are commonly amplified on particles of extrachromosomal DNA (ecDNA) in cancer1,2, but our understanding of the structure of ecDNA and its effect on gene regulation is limited. Here, by integrating ultrastructural imaging, long-range optical mapping and computational analysis of whole-genome sequencing, we demonstrate the structure of circular ecDNA. Pan-cancer analyses reveal that oncogenes encoded on ecDNA are among the most highly expressed genes in the transcriptome of the tumours, linking increased copy number with high transcription levels. Quantitative assessment of the chromatin state reveals that although ecDNA is packaged into chromatin with intact domain structure, it lacks higher-order compaction that is typical of chromosomes and displays significantly enhanced chromatin accessibility. Furthermore, ecDNA is shown to have a significantly greater number of ultra-long-range interactions with active chromatin, which provides insight into how the structure of circular ecDNA affects oncogene function, and connects ecDNA biology with modern cancer genomics and epigenetics.


Subject(s)
Chromatin/genetics , DNA, Circular/metabolism , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , Oncogenes/genetics , Cell Line, Tumor , Chromatin/chemistry , DNA, Circular/genetics , Humans , Microscopy, Electron, Scanning , Neoplasms/physiopathology
2.
Mol Cancer Res ; 17(11): 2208-2220, 2019 11.
Article in English | MEDLINE | ID: mdl-31444232

ABSTRACT

The epidermal growth factor receptor (EGFR) is overexpressed in numerous solid tumors and is the subject of extensive therapeutic efforts. Much of the research on EGFR is focused on protein dynamics and downstream signaling; however, few studies have explored its transcriptional regulation. Here, we identified two enhancers (CE1 and CE2) present within the first intron of the EGFR gene in models of glioblastoma (GBM) and head and neck squamous cell carcinoma (HNSCC). CE1 and CE2 contain open chromatin and H3K27Ac histone marks, enhance transcription in reporter assays, and interact with the EGFR promoter. Enhancer genetic deletion by CRISPR/Cas9 significantly reduces EGFR transcript levels, with double deletion exercising an additive effect. Targeted repression of CE1 and CE2 by dCas9-KRAB demonstrates repression of transcription similar to that of genomic deletion. We identify AP-1 transcription factor family members in concert with BET bromodomain proteins as modulators of CE1 and CE2 activity in HNSCC and GBM through de novo motif identification and validate their presence. Genetic inhibition of AP-1 or pharmacologic disruption of BET/AP-1 binding results in downregulated EGFR protein and transcript levels, confirming a role for these factors in CE1 and CE2. Our results identify and characterize these novel enhancers, shedding light on the role that epigenetic mechanisms play in regulating EGFR transcription in EGFR-dependent cancers. IMPLICATIONS: We identify critical constituent enhancers present in the first intron of the EGFR gene, and provide a rationale for therapeutic targeting of EGFR intron 1 enhancers through perturbation of AP-1 and BET in EGFR-positive malignancies.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Proteins/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Transcription Factor AP-1/metabolism , Cell Line, Tumor , Chromatin/genetics , Epigenesis, Genetic , ErbB Receptors/genetics , ErbB Receptors/metabolism , Genes, Reporter , Glioblastoma/pathology , Humans , Introns/genetics , Promoter Regions, Genetic/genetics , Proteins/genetics , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription Factor AP-1/genetics
4.
Genes Dev ; 31(12): 1212-1227, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28724615

ABSTRACT

In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.


Subject(s)
Drug Resistance, Neoplasm/genetics , Glioblastoma/physiopathology , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction/genetics , Animals , Cell Communication , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Interleukin-6/metabolism , Mice , Mice, Nude , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Nat Commun ; 8: 15223, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28497778

ABSTRACT

Glioblastoma (GBM) is the most lethal type of human brain cancer, where deletions and mutations in the tumour suppressor gene PTEN (phosphatase and tensin homolog) are frequent events and are associated with therapeutic resistance. Herein, we report a novel chromatin-associated function of PTEN in complex with the histone chaperone DAXX and the histone variant H3.3. We show that PTEN interacts with DAXX and, in turn PTEN directly regulates oncogene expression by modulating DAXX-H3.3 association on the chromatin, independently of PTEN enzymatic activity. Furthermore, DAXX inhibition specifically suppresses tumour growth and improves the survival of orthotopically engrafted mice implanted with human PTEN-deficient glioma samples, associated with global H3.3 genomic distribution changes leading to upregulation of tumour suppressor genes and downregulation of oncogenes. Moreover, DAXX expression anti-correlates with PTEN expression in GBM patient samples. Since loss of chromosome 10 and PTEN are common events in cancer, this synthetic growth defect mediated by DAXX suppression represents a therapeutic opportunity to inhibit tumorigenesis specifically in the context of PTEN deletion.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Chromatin/metabolism , Glioblastoma/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cells, Cultured , Chromatin/genetics , Co-Repressor Proteins , Glioblastoma/genetics , Glioblastoma/pathology , HEK293 Cells , Humans , Mice , Molecular Chaperones , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Protein Binding , RNA Interference , Transplantation, Heterologous
6.
Carcinogenesis ; 35(1): 218-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23975833

ABSTRACT

The long-term survival of patients with glioblastoma is compromised by the proclivity for local invasion into the surrounding normal brain, escaping surgical resection and contributing to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the Rho guanosine triphosphatase family member Rac1. Here, we demonstrate that TWEAK acts as a chemotactic factor for glioma cells, a potential process for driving cell invasion into the surrounding brain tissue. TWEAK exposure induced the activation of Src family kinases (SFKs), and pharmacologic suppression of SFK activity inhibited TWEAK-induced chemotactic migration. We employed a multiplexed Luminex assay and identified Lyn as a candidate SFK activated by TWEAK. Depletion of Lyn suppressed TWEAK-induced chemotaxis and Rac1 activity. Furthermore, Lyn gene expression levels increase with primary glioma tumor grade and inversely correlate with patient survival. These results show that TWEAK-induced glioma cell chemotaxis is dependent upon Lyn kinase function and, thus, provides opportunities for therapeutic targeting of this deadly disease.


Subject(s)
Brain Neoplasms/pathology , Chemotaxis/physiology , Glioblastoma/pathology , Tumor Necrosis Factors/metabolism , src-Family Kinases/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Cell Movement , Cytokine TWEAK , Enzyme Activation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/mortality , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Rats, Wistar , Tumor Necrosis Factors/genetics , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , src-Family Kinases/genetics
7.
Am J Pathol ; 181(1): 111-20, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22634180

ABSTRACT

Lung cancer is the leading cause of cancer deaths worldwide; approximately 85% of these cancers are non-small cell lung cancer (NSCLC). Patients with NSCLC frequently have tumors harboring somatic mutations in the epidermal growth factor receptor (EGFR) gene that cause constitutive receptor activation. These patients have the best clinical response to EGFR tyrosine kinase inhibitors (TKIs). Herein, we show that fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is frequently overexpressed in NSCLC tumors, and Fn14 levels correlate with p-EGFR expression. We also report that NSCLC cell lines that contain EGFR-activating mutations show high levels of Fn14 protein expression. EGFR TKI treatment of EGFR-mutant HCC827 cells decreased Fn14 protein levels, whereas EGF stimulation of EGFR wild-type A549 cells transiently increased Fn14 expression. Furthermore, Fn14 is highly expressed in EGFR-mutant H1975 cells that also contain an EGFR TKI-resistance mutation, and high TKI doses are necessary to reduce Fn14 levels. Constructs encoding EGFRs with activating mutations induced Fn14 expression when expressed in rat lung epithelial cells. We also report that short hairpin RNA-mediated Fn14 knockdown reduced NSCLC cell migration and invasion in vitro. Finally, Fn14 overexpression enhanced NSCLC cell migration and invasion in vitro and increased experimental lung metastases in vivo. Thus, Fn14 may be a novel therapeutic target for patients with NSCLC, in particular for those with EGFR-driven tumors who have either primary or acquired resistance to EGFR TKIs.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/metabolism , Lung Neoplasms/metabolism , Receptors, Tumor Necrosis Factor/physiology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/secondary , Cell Movement/physiology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Erlotinib Hydrochloride , Gene Knockdown Techniques , Genes, ras/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, SCID , Mutation , Neoplasm Invasiveness , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Neoplasm Transplantation , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Rats , Receptors, Tumor Necrosis Factor/biosynthesis , Receptors, Tumor Necrosis Factor/deficiency , Receptors, Tumor Necrosis Factor/genetics , Signal Transduction/physiology , TWEAK Receptor , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...