Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Molecules ; 26(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443611

ABSTRACT

Pheromones are biologically important in fruit fly mating systems, and also have potential applications as attractants or mating disrupters for pest management. Bactrocera kraussi (Hardy) (Diptera: Tephritidae) is a polyphagous pest fruit fly for which the chemical profile of rectal glands is available for males but not for females. There have been no studies of the volatile emissions of either sex or of electrophysiological responses to these compounds. The present study (i) establishes the chemical profiles of rectal gland contents and volatiles emitted by both sexes of B. kraussi by gas chromatography-mass spectrometry (GC-MS) and (ii) evaluates the detection of the identified compounds by gas chromatography-electroantennogram detection (GC-EAD) and -electropalpogram detection (GC-EPD). Sixteen compounds are identified in the rectal glands of male B. kraussi and 29 compounds are identified in the rectal glands of females. Of these compounds, 5 were detected in the headspace of males and 13 were detected in the headspace of females. GC-EPD assays recorded strong signals in both sexes against (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-ethyl-7-mehtyl-1,6-dioxaspiro[4.5]decane isomer 2, (E,Z)/(Z,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, and (Z,Z)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. Male antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, 2-methyl-6-pentyl-3,4-dihydro-2H-pyran, 6-hexyl-2-methyl-3,4-dihydro-2H-pyran, 6-oxononan-1-ol, ethyl dodecanoate, ethyl tetradecanoate and ethyl (Z)-hexadec-9-enoate, whereas female antennae responded to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and 2-methyl-6-pentyl-3,4-dihydro-2H-pyran only. These compounds are candidates as pheromones mediating sexual interactions in B. kraussi.


Subject(s)
Electrophysiological Phenomena , Rectum/metabolism , Tephritidae , Volatile Organic Compounds/metabolism , Animals , Female , Male
2.
BMJ Glob Health ; 6(5)2021 05.
Article in English | MEDLINE | ID: mdl-33975886

ABSTRACT

INTRODUCTION: Child mortality remains highest in regions of the world most affected by HIV/AIDS. The aim of this study was to assess child mortality rates in relation to maternal HIV status from 2005 to 2015, the period of rapid HIV treatment scale-up in Rwanda. METHODS: We used data from the 2005, 2010 and 2015 Rwanda Demographic Health Surveys to derive under-2 mortality rates by survey year and mother's HIV status and to build a multivariable logistic regression model to establish the association of independent predictors of under-2 mortality stratified by mother's HIV status. RESULTS: In total, 12 010 live births were reported by mothers in the study period. Our findings show a higher mortality among children born to mothers with HIV compared with HIV negative mothers in 2005 (216.9 vs 100.7 per 1000 live births) and a significant reduction in mortality for both groups in 2015 (72.0 and 42.4 per 1000 live births, respectively). In the pooled reduced multivariable model, the odds of child mortality was higher among children born to mothers with HIV, (adjusted OR, AOR 2.09; 95% CI 1.57 to 2.78). The odds of child mortality were reduced in 2010 (AOR 0.69; 95% CI 0.59 to 0.81) and 2015 (AOR 0.35; 95% CI 0.28 to 0.44) compared with 2005. Other independent predictors of under-2 mortality included living in smaller families of 1-2 members (AOR 5.25; 95% CI 3.59 to 7.68), being twin (AOR 4.93; 95% CI 3.51 to 6.92) and being offspring from mothers not using contraceptives at the time of the survey (AOR 1.6; 95% CI 1.38 to 1.99). Higher education of mothers (completed primary school: (AOR 0.74; 95% CI 0.64 to 0.87) and secondary or higher education: (AOR 0.53; 95% CI 0.38 to 0.74)) was also associated with reduced child mortality. CONCLUSIONS: This study shows an important decline in under-2 child mortality among children born to both mothers with and without HIV in Rwanda over a 10-year span.


Subject(s)
Child Mortality , HIV Infections , Child , Humans , Infant Mortality , Retrospective Studies , Rwanda/epidemiology
3.
Sci Rep ; 10(1): 19799, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188282

ABSTRACT

Diverse methods have been used to sample insect semiochemicals. Sampling methods can differ in efficiency and affinity and this can introduce significant biases when interpreting biological patterns. We compare common methods used to sample tephritid fruit fly rectal gland volatiles ('pheromones'), focusing on Queensland fruit fly, Bactrocera tryoni. Solvents of different polarity, n-hexane, dichloromethane and ethanol, were compared using intact and crushed glands. Polydimethylsiloxane, polydimethylsiloxane/divinylbenzene and polyacrylate were compared as adsorbents for solid phase microextraction. Tenax-GR and Porapak Q were compared as adsorbents for dynamic headspace sampling. Along with compounds previously reported for B. tryoni, we detected five previously unreported compounds in males, and three in females. Dichloromethane extracted more amides while there was no significant difference between the three solvents in extraction of spiroacetals except for (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane for which n-hexane extracted higher amount than both dichloromethane and ethanol. Ethanol failed to contain many of the more volatile compounds. Crushed rectal gland samples provided higher concentrations of extracted compounds than intact rectal gland samples, but no compounds were missed in intact samples. Of solid phase microextraction fibers, polyacrylate had low affinity for spiroacetals, ethyl isobutyrate and ethyl-2-methylbutanoate. Polydimethylsiloxane was more efficient for spiroacetals while type of fiber did not affect the amounts of amides and esters. In dynamic headspace sampling, Porapak was more efficient for ethyl isobutyrate and spiroacetals, while Tenax was more efficient for other esters and amides, and sampling time was a critical factor. Biases that can be introduced by sampling methods are important considerations when collecting and interpreting insect semiochemical profiles.


Subject(s)
Tephritidae/chemistry , Animals , Dimethylpolysiloxanes/chemistry , Ethanol/chemistry , Hexanes/chemistry , Methylene Chloride/chemistry , Solid Phase Microextraction , Vinyl Compounds/chemistry
4.
J Agric Food Chem ; 68(36): 9654-9663, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32794749

ABSTRACT

We report on the vapor pressures at ambient temperatures of seven attractants of Bactrocera, Dacus, and Zeugodacus fruit flies-raspberry ketone, cuelure, raspberry ketone trifluoroacetate, methyl eugenol, methyl isoeugenol, dihydroeugenol, and zingerone-by a vapor saturation method. Dry nitrogen was passed over each compound at well-controlled temperatures. Entrained vapor from the compounds was trapped on Tenax GR tubes and analyzed by thermal desorption-gas chromatography-mass spectrometry. The measured attractant amounts on the traps were converted to vapor pressures. Data were subsequently fitted by the Antoine equation. From the Antoine equation parameters, thermodynamic properties for each compound were calculated at 298 K. The calculated vapor pressures were used to compare the volatility of the fruit fly attractants and to infer implications for field applications. Using ambient temperature readings yields far better estimates of vapor pressure values at temperatures relevant for insect control than do Antoine equation parameters derived from high-temperature readings.


Subject(s)
Boronic Acids/chemistry , Phenylpropionates/chemistry , Pheromones/chemistry , Tephritidae/physiology , Animals , Butanones/chemistry , Female , Insect Control , Male , Temperature , Thermodynamics , Vapor Pressure
5.
Molecules ; 25(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580521

ABSTRACT

Passiflora maliformis is an introduced plant in Australia but its flowers are known to attract the native Jarvis's fruit fly, Bactrocera jarvisi (Tryon). The present study identifies and quantifies likely attractant(s) of male B. jarvisi in P. maliformis flowers. The chemical compositions of the inner and outer coronal filaments, anther, stigma, ovary, sepal, and petal of P. maliformis were separately extracted with ethanol and analyzed using gas chromatography-mass spectrometry (GC-MS). Polyisoprenoid lipid precursors, fatty acids and their derivatives, and phenylpropanoids were detected in P. maliformis flowers. Phenylpropanoids included raspberry ketone, cuelure, zingerone, and zingerol, although compositions varied markedly amongst the flower parts. P. maliformis flowers were open for less than one day, and the amounts of some of the compounds decreased throughout the day. The attraction of male B. jarvisi to P. maliformis flowers is most readily explained by the presence of zingerone in these flowers.


Subject(s)
Flowers/chemistry , Guaiacol/analogs & derivatives , Passiflora/chemistry , Tephritidae/physiology , Animals , Australia , Behavior, Animal/drug effects , Female , Gas Chromatography-Mass Spectrometry , Guaiacol/chemistry , Guaiacol/isolation & purification , Male , Pheromones/chemistry
6.
Molecules ; 25(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168881

ABSTRACT

Bactrocera frauenfeldi (Schiner) (Diptera: Tephritidae) is a polyphagous fruit fly pest species that is endemic to Papua New Guinea and has become established in several Pacific Islands and Australia. Despite its economic importance for many crops and the key role of chemical-mediated sexual communication in the reproductive biology of tephritid fruit flies, as well as the potential application of pheromones as attractants, there have been no studies investigating the identity or activity of rectal gland secretions or emission profiles of this species. The present study (1) identifies the chemical profile of volatile compounds produced in rectal glands and released by B. frauenfeldi, (2) investigates which of the volatile compounds elicit an electroantennographic or electropalpographic response, and (3) investigates the potential function of glandular emissions as mate-attracting sex pheromones. Rectal gland extracts and headspace collections from sexually mature males and females of B. frauenfeldi were analysed by gas chromatography-mass spectrometry. Male rectal glands contained (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro [5.5]undecane as a major component and (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane as a moderate component. Minor components included palmitoleic acid, palmitic acid, and ethyl oleate. In contrast, female rectal glands contained (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and ethyl laurate as major components, ethyl myristate and ethyl palmitoleate as moderate components, and 18 minor compounds including amides, esters, and spiroacetals. Although fewer compounds were detected from the headspace collections of both males and females than from the gland extractions, most of the abundant chemicals in the rectal gland extracts were also detected in the headspace collections. Gas chromatography coupled electroantennographic detection found responses to (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane from the antennae of both male and female B. frauenfeldi. Responses to (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane were elicited from the antennae of females but not males. The two spiroacetals also elicited electropalpographic responses from both male and female B. frauenfeldi. Ethyl caprate and methyl laurate, found in female rectal glands, elicited responses in female antennae and palps, respectively. Y-maze bioassays showed that females were attracted to the volatiles from male rectal glands but males were not. Neither males nor females were attracted to the volatiles from female rectal glands. Our findings suggest (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane and (E,E)-2-ethyl-8-methyl-1,7-dioxaspiro[5.5]undecane as components of a sex-attracting pheromone in B. frauenfeldi.


Subject(s)
Arthropod Antennae/physiology , Olfactory Perception/physiology , Salt Gland/physiology , Sex Attractants/metabolism , Tephritidae/physiology , Volatile Organic Compounds/metabolism , Alkanes/metabolism , Animals , Arthropod Antennae/chemistry , Caproates/metabolism , Fatty Acids, Monounsaturated/metabolism , Female , Gas Chromatography-Mass Spectrometry , Laurates/metabolism , Male , Myristates/metabolism , Oleic Acids/metabolism , Palmitic Acid/metabolism , Salt Gland/chemistry , Sex Attractants/analysis , Sex Attractants/classification , Species Specificity , Tephritidae/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/classification
7.
Sci Rep ; 9(1): 19332, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852933

ABSTRACT

Tephritid fruit flies are amongst the most significant horticultural pests globally and male chemical lures are important for monitoring and control. Zingerone has emerged as a unique male fruit fly lure that can attract dacine fruit flies that are weakly or non-responsive to methyl eugenol and cuelure. However, the key features of zingerone that mediate this attraction are unknown. As Jarvis's fruit fly, Bactrocera jarvisi (Tryon), is strongly attracted to zingerone, we evaluated the response of B. jarvisi to 37 zingerone analogues in a series of field trials to elucidate the functional groups involved in attraction. The most attractive analogues were alkoxy derivatives, with isopropoxy being the most attractive, followed by ethoxy and trifluoromethoxy analogues. All of the phenolic esters tested were also attractive with the response typically decreasing with increasing size of the ester. Results indicate that the carbonyl group, methoxy group, and phenol of zingerone are key sites for the attraction of B. jarvisi and identify some constraints on the range of structural modifications that can be made to zingerone without compromising attraction. These findings are important for future work in developing and optimising novel male chemical lures for fruit flies.


Subject(s)
Chemotactic Factors/pharmacology , Guaiacol/analogs & derivatives , Tephritidae/physiology , Animals , Guaiacol/chemistry , Guaiacol/pharmacology , Male , Tephritidae/drug effects , Vapor Pressure , Volatilization
8.
Insects ; 11(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906084

ABSTRACT

The banana fruit fly, Bactrocera musae (Tryon) (Diptera: Tephritidae), is an economically important pest endemic to Australia and mainland Papua New Guinea. The chemistry of its rectal glands, and the volatiles emitted during periods of sexual activity, has not been previously reported. Using gas chromatography-mass spectrometry (GC-MS), we find that male rectal glands contain ethyl butanoate, N-(3-methylbutyl) acetamide, ethyl laurate and ethyl myristate, with ethyl butanoate as the major compound in both rectal gland and headspace volatile emissions. Female rectal glands contain four major compounds, ethyl laurate, ethyl myristate, ethyl palmitate and (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, as well as 11 minor compounds. For both male and female B. musae, all compounds found in the headspace were also present in the rectal gland extracts, suggesting that the rectal gland is the main source of the headspace volatiles. Gas chromatography-electroantennography (GC-EAD) of rectal gland extracts confirms that male antennae respond to male-produced ethyl laurate and female-produced (E,E)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane, while female antennae respond to male-produced ethyl butanoate but no female-produced compounds. This is an important step in understanding the volatiles involved in the chemical communication of B. musae, their functional significance, and potential application.

9.
PLoS One ; 11(5): e0155827, 2016.
Article in English | MEDLINE | ID: mdl-27196605

ABSTRACT

The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Q-fly), is a major horticultural pest in Eastern Australia. Effective monitoring, male annihilation technique (MAT) and mass trapping (MT) are all important for control and require strong lures to attract flies to traps or toxicants. Lure strength is thought to be related in part to volatility, but little vapour pressure data are available for most Q-fly lures. Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) and analogs that had esters (acetyl, difluoroacetyl, trifluoroacetyl, formyl, propionyl) and ethers (methyl ether, trimethylsilyl ether) in replacement of the phenolic group, and in one case also had modification of the 2-butanone side chain, were measured for their vapour pressures by differential scanning calorimetry (DSC), and their attractiveness to Q-fly was assessed in small cage environmentally controlled laboratory bioassays. Maximum response of one category of compounds, containing both 2-butanone side chain and ester group was found to be higher than that of the other group of compounds, of which either of 2-butanone or ester functionality was modified. However, linear relationship between vapour pressure and maximum response was not significant. The results of this study indicate that, while volatility may be a factor in lure effectiveness, molecular structure is the dominating factor for the series of molecules investigated.


Subject(s)
Butanones/chemistry , Tephritidae/physiology , Vapor Pressure , Animals , Australia , Calibration , Calorimetry, Differential Scanning , Chromatography, Gas , Female , Gases , Insect Control/methods , Magnetic Resonance Spectroscopy , Male , Pheromones , Temperature
10.
J Chem Ecol ; 42(2): 156-62, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26922349

ABSTRACT

Queensland fruit fly, Bactrocera tryoni (Q-fly), is a major pest of horticultural crops in eastern Australia. Lures that attract male Q-fly are important for detection of incursions and outbreaks, monitoring of populations, and control by mass trapping and male annihilation. Cuelure, an analog of naturally occurring raspberry ketone, is the standard Q-fly lure, but it has limited efficacy compared with lures that are available for some other fruit flies such as methyl eugenol for B. dorsalis. Melolure is a more recently developed raspberry ketone analog that has shown better attraction than cuelure in some field studies but not in others. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroacetate (RKTA), has been developed as a potential improvement on cuelure and melolure. RKTA placed on laboratory cages containing 2-week-old Q-flies elicited strong behavioral responses from males. Quantification of Q-fly responses in these cages, using digital images to estimate numbers of flies aggregated near different lures, showed RKTA attracted and arrested significantly more flies than did cuelure or melolure. RKTA shows good potential as a new lure for improved surveillance and control of Q-fly.


Subject(s)
Butanones/metabolism , Tephritidae/physiology , Trifluoroacetic Acid/metabolism , Animals , Behavior, Animal , Female , Magnetic Resonance Spectroscopy , Male , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Plant Signal Behav ; 10(3): e990830, 2015.
Article in English | MEDLINE | ID: mdl-25734586

ABSTRACT

The effect of drought on plant isoprene emission varies tremendously across species and environments. It was recently shown that an increased ratio of photosynthetic electron transport rate (ETR) to net carbon assimilation rate (NAR) consistently supported increased emission under drought. In this commentary, we highlight some of the physiological aspects of drought tolerance that are central to the observed variability. We briefly discuss some of the issues that must be addressed in order to refine our understanding of plant isoprene emission response to drought and increasing global temperature.


Subject(s)
Acclimatization , Butadienes/metabolism , Droughts , Hemiterpenes/metabolism , Pentanes/metabolism , Photosynthesis/physiology , Plants/metabolism , Stress, Physiological , Water/metabolism , Cell Respiration
12.
Plant Physiol ; 166(2): 1059-72, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25139160

ABSTRACT

Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r(2) > 0.8) and photorespiratory stress (r(2) > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission.


Subject(s)
Droughts , Electron Transport , Eucalyptus/metabolism , Terpenes/metabolism , Plant Leaves/metabolism
13.
Opt Express ; 22(11): 13170-89, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921513

ABSTRACT

A continuous-wave, rapidly swept cavity-ringdown spectroscopic technique has been developed for localized atmospheric sensing of trace gases at remote sites. It uses one or more passive open-path optical sensor units, coupled by optical fiber over distances of >1 km to a single transmitter/receiver console incorporating a photodetector and a swept-frequency diode laser tuned to molecule-specific near-infrared wavelengths. Ways to avoid interference from stimulated Brillouin scattering in long optical fibers have been devised. This rugged open-path system, deployable in agricultural, industrial, and natural atmospheric environments, is used to monitor ammonia in air. A noise-limited minimum detectable mixing ratio of ~11 ppbv is attained for ammonia in nitrogen at atmospheric pressure.

14.
Cell Tissue Res ; 356(3): 533-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24803027

ABSTRACT

Transcription is the primary regulatory step to gene expression. However, there are numerous post-transcriptional mechanisms that are also crucial for developing the transcritptome, and the subsequent proteome, signature of any physiological setting. Organ and tissue regeneration is one such physiological setting that requires the rapid development of an environment that can supply all of the necessary molecular and cellular signalling needs necessary to attenuate infection, remove dead or necrotic cells, provide structural stability and finally replenish the compromised area with functional cells. The post-transcriptional regulatory mechanisms that have the ability to heavily influence the molecular and cellular pathways associated with regeneration are slowly being characterized. This mini-review will further clarify the possible regulation of regeneration through adenosine-to-inosine (A-I) RNA editing; a post-transcriptional mechanism that can affect the molecular and cellular pathways associated with functional restoration of damaged tissues and organs through discrete nucleotide changes in RNA transcripts. It is hoped that the intriguing links made between A-I RNA editing and regeneration in this mini-review will encourage further comparative studies into this infant field of research.


Subject(s)
RNA Editing/physiology , RNA/metabolism , Regeneration/physiology , Animals , Humans , RNA/genetics
15.
Trends Plant Sci ; 19(7): 439-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24582468

ABSTRACT

Light-dependent de novo volatile isoprene emission by terrestrial plants (approximately 2% of carbon fixed during photosynthesis) contributes as much as 0.5 PgC/year to the global carbon cycle. Although most plant taxa exhibit either constitutive or inducible monoterpene emissions, the evolution of isoprene emission capacity in multiple lineages has remained unexplained. Based on the predominant occurrence of isoprene emission capacity in long-lived, fast-growing woody plants; the relationship between 'metabolic scope' of tree genera and their species richness; and the proposed role of high growth rates and long generation times in accelerating molecular evolution, we hypothesise that long-lived plant genera with inherently high speciation rates have repeatedly acquired and lost the capacity to emit isoprene in their evolutionary history.


Subject(s)
Butadienes/metabolism , Hemiterpenes/metabolism , Pentanes/metabolism , Plants/genetics , Volatile Organic Compounds/metabolism , Carbon Dioxide/metabolism , Hemiterpenes/biosynthesis , Light , Plants/chemistry , Plants/radiation effects , Temperature
16.
Exp Cell Res ; 321(1): 58-63, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-23933519

ABSTRACT

The heart is a robust organ, capable of pumping nutrients and transferring oxygen throughout the body via a network of capillaries, veins and arteries, for the entirety of a human's life. However, the fragility of mammalian hearts is also evident when it becomes damaged and parts of the organ fail to function. This is due to the fact that rather than replenishing the damaged areas with functional cellular mass, fibrotic scar tissue is the preferred replacement, resulting in an organ with functional deficiencies. Due to the mammalian hearts incapability to regenerate following damage and the ever-increasing number of people worldwide suffering from heart disease, tireless efforts are being made to discover ways of inducing a regenerative response in this most important organ. One such avenue of investigation involves studying our distantly related non-mammalian vertebrate cousins, which over the last decade has proved to us that cardiac regeneration is possible. This review will highlight these organisms and provide insights into some of the seminal discoveries made in the heart regeneration field using these amazing chordates.


Subject(s)
Heart/physiology , Regeneration/physiology , Vertebrates/physiology , Animals , Humans
17.
Dev Biol ; 383(2): 253-63, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24055866

ABSTRACT

Cardiovascular disease is a global scourge to society, with novel therapeutic approaches required in order to alleviate the suffering caused by sustained cardiac damage. MicroRNAs (miRNAs) are being touted as one such approach in the fight against heart disease, acting as possible post-transcriptional molecular triggers responsible for invoking cardiac regeneration. To further ones understanding of miRNAs and cardiac regeneration, it is prudent to learn from organisms that can intrinsically regenerate their hearts following injury. Using the red-spotted newt, an adult chordate capable of cardiac regeneration, we decided to delve deeper into the role miRNAs play during this process. RNA isolated from regenerating newt heart samples, was used in a microarray screen, to identify significantly expressed candidate miRNAs during newt cardiac regeneration. We performed quantitative qPCR analysis on several conserved miRNAs and found one in particular, miR-128, to be significantly elevated when cardiac hyperplasia is at its peak following injury. In-situ hybridisation techniques revealed a localised expression pattern for miR-128 in the cardiomyocytes and non-cardiomyocytes in close proximity to the regeneration zone and in vivo knockdown studies revealed a regulatory role for miR-128 in proliferating non-cardiomyocyte populations and extracellular matrix deposition. Finally, 3'UTR reporter assays revealed Islet1 as a biological target for miR-128, which was confirmed further through in vivo Islet1 transcriptional and translational expression analysis in regenerating newt hearts. From these studies we conclude that miR-128 regulates both cardiac hyperplasia and Islet1 expression during newt heart regeneration and that this information could be translated into future mammalian cardiac studies.


Subject(s)
Extracellular Matrix/metabolism , Gene Expression Regulation , LIM-Homeodomain Proteins/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Regeneration/genetics , Transcription Factors/genetics , Animals , Base Sequence , Down-Regulation , Fibrin/metabolism , Hyperplasia , LIM-Homeodomain Proteins/metabolism , MicroRNAs/genetics , Molecular Sequence Data , Myocardium/metabolism , Myocardium/pathology , RNA Transport/genetics , Salamandridae , Transcription Factors/metabolism , Transcription, Genetic
18.
Dev Biol ; 354(1): 67-76, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21457708

ABSTRACT

Urodele amphibians, like the newt, are the "champions of regeneration" as they are able to regenerate many body parts and tissues. Previous experiments, however, have suggested that the newt heart has only a limited regeneration capacity, similar to the human heart. Using a novel, reproducible ventricular resection model, we show for the first time that adult newt hearts can fully regenerate without any evidence of scarring. This process is governed by increased proliferation and the up-regulation of cardiac transcription factors normally expressed during developmental cardiogenesis. Furthermore, we are able to identify cells within the newly regenerated regions of the myocardium that express the LIM-homeodomain protein Islet1 and GATA4, transcription factors found in cardiac progenitors. Information acquired from using the newt as a model organism may help to shed light on the regeneration deficits demonstrated in damaged human hearts.


Subject(s)
Heart Injuries/physiopathology , Heart/physiopathology , Regeneration , Salamandridae/physiology , Animals , Cell Proliferation , GATA4 Transcription Factor/genetics , Gene Expression , Homeodomain Proteins/genetics , LIM-Homeodomain Proteins , Microscopy, Confocal , Microscopy, Fluorescence , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reverse Transcriptase Polymerase Chain Reaction , Salamandridae/genetics , Transcription Factors
19.
Isotopes Environ Health Stud ; 42(1): 9-20, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16500751

ABSTRACT

Continuous records of isotope behaviour in the environment are invaluable to understanding mass and energy fluxes. Although techniques such as isotope ratio mass spectrometry provide high precision data, they are not well suited to the analysis of a large number of samples and are currently restricted to use in the laboratory. Fourier transform infrared spectrometers are relatively cheap and sufficiently portable and robust to be taken into the field to collect continuous records of gas-phase isotope behaviour. Several examples of the application of this technique will be presented. One data set provides half-hourly determinations of vertical profiles of D/H in water vapour above agricultural fields over a 3-week period; the same infrared spectra can also be used to determine 13C/12C in CO2. The technique has also been applied to the study of CO2 in ambient air and in a limestone cave system. Some of the features and complications associated with the method will also be considered.


Subject(s)
Air/analysis , Carbon Dioxide/chemistry , Carbon Isotopes/chemistry , Deuterium/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Agriculture , Ecosystem , Humans , Plants/metabolism , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods
20.
Anal Biochem ; 349(1): 96-102, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16321356

ABSTRACT

A rapid and sensitive fluorescence-based bioassay for determination of indoleamine 2,3-dioxygenase (IDO) activity has been developed. This assay relies on the quantification of the amount of kynurenine produced in the assay medium by fluorescence and complements the standard absorbance and high-performance liquid chromatography (HPLC) assay methods. The fluorescence method has limits of detection similar to those of the standard assay methods. Measured activities of IDO, including in the presence of tryptophan-based inhibitors, were in statistical agreement with the absorbance and HPLC assay methods. The fluorescence-based assay was also suitable for assessment of IDO inhibition by compounds that are incompatible with the absorbance method.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Spectrometry, Fluorescence , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/standards , Kynurenine , Reference Standards , Sodium Hydroxide , Spectrometry, Fluorescence/methods , Trichloroacetic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...