Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(2): 377-382, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227231

ABSTRACT

We demonstrate an all-fiber supercontinuum (SC) source delivering up to 40 W of average power ranging from 750 to 2200 nm. The laser source is based on a self-Q-switched pump-sharing oscillator-amplifier. The self-Q-switched master oscillator generates giant pulses, amplified in the high-power stage. Finally, a passive fiber acts as a nonlinear stage, improving the spectrum flatness as well as the spectral broadening. To the best of our knowledge, this is the first time that a pump-sharing oscillator-amplifier is used for SC generation and is based on the use of a submeter Ytterbium-doped fiber length inside the oscillator.

2.
Opt Lett ; 48(11): 2905-2908, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262240

ABSTRACT

Four-wave mixing is investigated when chirped pump and signal pulses are injected in a photonic crystal fiber. The shot-to-shot stability of the amplified coherent signal was measured by using the dispersive Fourier transform method and compared with numerical simulations. We highlight that the signal-to-noise ratio (SNR) of the pulsed signal increases with the injected power and show that it is not deteriorated through the amplification when the fiber optical parametric amplifier is strongly saturated. The SNR of the signal remains nearly constant after the amplifier.

3.
Opt Express ; 30(16): 29044-29062, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299089

ABSTRACT

Temporally coherent supercontinuum sources constitute an attractive alternative to bulk crystal-based sources of few-cycle light pulses. We present a monolithic fiber-optic configuration for generating transform-limited temporally coherent supercontinuum pulses with central wavelength at 1.06 µm and duration as short as 13.0 fs (3.7 optical cycles). The supercontinuum is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultrabroadband spectra and ultrashort pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 µm, to demonstrate their successful performance in ultrabroadband multispectral and multimodal nonlinear microscopy.

4.
Opt Express ; 30(6): 8550-8559, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299306

ABSTRACT

We report on the conception, fabrication and characterization of a new concept of optical fiber enabling a precise control of the ratio between the 2nd and 4th-order of chromatic dispersion (respectively ß2 and ß4) at 1.55 µm which is at the heart of the Four-Wave-Mixing (FWM) generation. For conventional highly nonlinear fiber the sensitivity of this ratio to fiber geometry fluctuations is very critical, making the fabrication process challenging. The new design fiber reconciles the accurate control of chromatic dispersion properties and fabrication by standard stack and draw method, allowing a robust and reliable method against detrimental fluctuations parameters during the fabrication process. Experimental frequency conversion with FWM in the new design fiber is demonstrated.

5.
Opt Lett ; 46(12): 2956-2959, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34129583

ABSTRACT

To prevent the thermally induced spatial beam degradation occurring in high-power fiber lasers and amplifiers, index-depressed core "fully aperiodic large-pitch fibers" (FA-LPFs) have been designed and fabricated. In contrast to previous experimental works performed on FA-LPFs, in which the active core and the surrounding cladding material are quasi-index-matched, the core refractive index is in slight depression compared to the surrounding material (Δn≈-3×10-5). Thus, the index-depressed fiber core tends first to behave as an anti-guide, preventing light from being properly guided into it. However, by increasing the absorbed pump power, the thermal load induces a parabolic refractive index change sufficient to compensate for the -3×10-5 index depression in the core, enabling a robust single-mode amplification at high average power. As a proof of concept, using a 110 µm depressed core FA-LPF, M2 values of 1.3 were demonstrated in amplifier configuration from 60 W to a maximal value of 170 W of emitted average power only limited by the available pump power.

6.
Opt Lett ; 45(15): 4148-4151, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735245

ABSTRACT

We report the spectral distribution of the parametric process generated in a photonic crystal fiber pumped by a chirped pulse. The spectral correlation of four-wave mixing has been measured using the dispersive Fourier transform method. From statistical analysis of multiple shot-to-shot spectral measurements, the spectral correlation between the signal and idler photons reveals physical insights into the particular portion of the pump spectrum responsible for generating the four-wave mixing. Therefore, the shape of the correlation map indicates directly the temporal and spectral links between the signal and the pump, which are highly important to design a four-wave mixing based amplifier.

7.
Opt Lett ; 44(19): 4690-4693, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568418

ABSTRACT

We demonstrate a widely tunable Q-switched dual-wavelength fiber laser emitting synchronized pulses in the 2 µm spectral range. Owing to the use of a Tm-doped rod-type fully aperiodic large pitch fiber, together with an acousto-optic modulator and two volume Bragg gratings (VBGs), the wavelength separation was shown to be continuously tunable from 1 to 120 nm (∼0.1-10 THz). A peak power higher than 8 kW was demonstrated over the whole tuning range for a repetition rate (RR) of 1 KHz and a 26 ns pulse duration. The RR was modulated from 1 to 30 kHz, and the laser pulse duration measured between 23 ns and 130 ns, depending on the RR and the wavelength separation.

8.
Appl Opt ; 57(29): 8582-8585, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30461927

ABSTRACT

Based on a special large-pitch architecture that has already proved its single-mode single-polarization behavior in a passive configuration, two ytterbium-doped versions of such large-mode-area fibers have been fabricated and tested in both laser and amplification configurations for high-power laser source applications. Due to the high sensitivity of large-pitch fiber design to the active-core-to-passive-cladding index mismatch, the realization of a single-polarization structure is highly challenging. However, we report on the preservation of a polarization-maintaining feature. A linear polarization with an extinction ratio of 17 dB is demonstrated for mode field diameters reaching up to 58 µm as long as the single-modeness of the emitted signal is preserved.

9.
Opt Express ; 26(9): 11265-11275, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716050

ABSTRACT

We present a detailed study on the generation of widely tunable visible light through four wave mixing in specifically designed micro-structured fibers. The fiber's properties are optimized for an efficient conversion to the visible and near infrared with a combined tunability from 620 to 910 nm of a picosecond Yb-doped tunable source for biomedical applications.

10.
Sensors (Basel) ; 17(12)2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29189755

ABSTRACT

In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

11.
Opt Lett ; 42(24): 5230-5233, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29240180

ABSTRACT

We report here on an experimental investigation of the temporal behavior of transverse mode instabilities into "fully aperiodic large-pitch fibers" (FA-LPFs) operated in high-power continuous-wave laser configuration. To ensure an effective transverse single-mode emission into FA-LPFs, a perfect index matching between the active core and the background cladding materials (Δn=0) is required. The original design of such fibers enables an effective transverse single-mode emission by strengthening the higher-order mode delocalization out of the gain region, even for high heat load levels, consequently leading to the improvement of the beam spatial quality. The study was conducted over fibers of various gain region diameters, from 58 to 100 µm, for a refractive index mismatch Δn of about +8×10-5. The emitted beam is characterized using both M2 measurements and time traces to study the changeover of a stable temporal behavior to an unstable one.

12.
Appl Opt ; 56(33): 9221-9224, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29216093

ABSTRACT

In this paper, we demonstrate a single-polarization feature out of passive very-large-mode-area fully aperiodic large-pitch fibers. It has been previously shown theoretically that one of the two polarizations of the fundamental mode is selectively coupled to a cladding mode. This coupling does not require fiber bending, which permits us to avoid any decrease in mode effective area. The coupling is achieved owing to boron-doped silica inclusions implemented into the microstructured cladding and acting as stress-applying parts. This mechanism has been assessed experimentally in this work using fibers of two different core diameters: 60 µm and 140 µm, providing mode field areas of 3637 µm2 and 14,590 µm2, respectively, at 1942 nm. The tested fibers have a length of 45 cm and an outer diameter exceeding 1 mm, yielding rod-type fibers. Each sample has been characterized using an unpolarized laser source emitting at 1942 nm. This laser, based on a thulium-doped large-mode-area step-index fiber, has a spectral bandwidth of about 0.5 nm. After passing through a piece of the passive fiber, a polarization extinction ratio higher than 16 dB has been achieved.

13.
Opt Lett ; 42(9): 1672-1675, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28454132

ABSTRACT

Two evolutions of fully aperiodic large-pitch fiber designs employing few stress-applying parts are presented. The induced elasto-optic stress discriminates the two orthogonal polarization modes (LP01x and LP01y) of the fundamental mode, selectively delocalizing one of them into the cladding via a suitable coupling to one or several cladding modes. This ensures the propagation of a single linear polarization mode. For the largest core dimensions, however, the applied stress can strongly influence the intensity distributions of core modes, and a tailored design process must thwart this. The polarization properties are investigated experimentally with core scalability over a large spectral bandwidth into passive structures, leading to the evidencing of a single-mode single polarization over a large span from 1 to 1.6 µm with a core dimension of 80 µm and, notably, at 1400 nm for a core dimension of 140 µm. The polarization extinction ratio is also determined.

14.
Appl Opt ; 55(29): 8213-8220, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27828065

ABSTRACT

In this paper, a strategy consisting of precompensating the thermal-induced transverse refractive index changes is undertaken to push further the appearance threshold of a multimode regime. First, a standard air-silica large pitch fiber (LPF) and a fully aperiodic large pitch fiber are confronted in regard to their heat load resilience and capabilities for single-mode emission. Thereafter, slight refractive index depressions are judiciously introduced into the active core area. This approach enhances the delocalization of the high-order modes even under severe heat load levels. This combination of aperiodic cladding microstructuration and index-precompensation theoretically increases the multimode regime threshold while preserving large mode field areas. This investigation is performed at 1.03 and 2 µm operating wavelengths.

15.
Appl Opt ; 55(23): 6229-35, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27534463

ABSTRACT

The first demonstration of a 40 µm core homogeneously ytterbium-doped fully aperiodic large-pitch fiber laser, to the best of our knowledge, is reported here. In this concept, the amplification of unwanted high-order modes is prevented by means of an aperiodic inner-cladding structure, while the core and inner-cladding material has a higher refractive index than pure silica. In a laser configuration, up to 252 W of extracted power, together with an optical-to-optical efficiency of 63% with respect to the incident pump power, have been achieved. While an average M2 of 1.4 was measured, the emitted power becomes temporally unstable when exceeding 95 W, owing to the occurrence of modal instabilities.

16.
Opt Lett ; 41(2): 384-7, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26766720

ABSTRACT

We report on a triple clad large-mode-area Tm-doped fiber laser with 18 µm core diameter manufactured for the first time by an alternative manufacturing process named REPUSIL. This reactive powder sinter material enables similar properties compared to conventional CVD-made fiber lasers, while offering the potential of producing larger and more uniform material. The fiber characterization in a laser configuration provides a slope efficiency of 47.7% at 20°C, and 50.4% at 0°C with 8 W output power, with a laser peak emission at 1970 nm. Finally, a beam quality near the diffraction-limit (M(x,y)2<1.1) is proved.


Subject(s)
Lasers , Optical Fibers , Thulium , Powders
17.
Sensors (Basel) ; 15(4): 8042-53, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25853404

ABSTRACT

A hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.

18.
Opt Lett ; 39(15): 4561-4, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25078228

ABSTRACT

We report here on the first experimental demonstration, to the best of our knowledge, of a new generation of very large mode area (VLMA) fibers intended to strengthen single-mode propagation. The originality of this work relies on an aperiodicity of the inner cladding microstructuration exacerbating the spatial rejection of higher-order-modes (HOMs) while preserving a significant confinement of the fundamental mode. The single-mode behavior was demonstrated using an optical low-coherence interferometry measurement based on the group-velocity dispersion. As suggested through a preliminary numerical approach, this outstanding characteristic/behavior is evidenced over a large spectral range spanning from 1 to 2 µm for a core diameter of 60 µm. Core scalability was also investigated.

19.
Opt Express ; 21(16): 18927-36, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938805

ABSTRACT

Very large mode area, active optical fibers with a low high order mode content in the actively doped core region were designed by removing the inner cladding symmetry. The relevance of the numerical approach is demonstrated here by the investigation of a standard air-silica Large Pitch Fiber, used as a reference. A detailed study of all-solid structures is also performed. Finally, we propose new kinds of geometry for 50 µm core, all-solid microstructured fibers enabling a robust singlemode laser emission from 400 nm to 2200 nm.

20.
Opt Lett ; 35(8): 1157-9, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20410951

ABSTRACT

An original design of hollow-core photonic crystal fiber composed of a thin silica ring suspended in air by six silica struts is proposed. This structure can be viewed as a simplified Kagomé-lattice fiber reduced to one layer of air holes. By working on the core surround parameters, an efficient antiresonant air guiding was successfully demonstrated. Two large low-loss windows (visible/IR) were measured with a minimum attenuation less than 0.2 dB radicalm at yellow wavelengths, comparable with state-of-the-art designs. The curvature behavior was also studied, showing low bending loss sensitivity for the fundamental transmission band. These relevant features might open a new route to propose original hollow-core fiber designs while making their production simpler and faster than previously.

SELECTION OF CITATIONS
SEARCH DETAIL
...