Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 296: 133961, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35157882

ABSTRACT

Elevated concentrations of natural organic matter (NOM) and organic micropollutants (OMPs) can contaminate the quality of drinking water, and current water treatment technologies are not always successful in removing all their constituents. Ozonation and adsorption are two advanced processes with different removal mechanisms used to treat NOM and OMPs. Their treatment efficiency depends on the strength and kinetics of adsorption and ozonation (ozone molecule and OH radical (OH•) reaction) of the individual NOM constituents and OMPs. They are individually able to remove many of the NOM fractions and OMPs but not satisfactory in removing the vast array of their components which differ in their physico-chemical characteristics, for example molecular weight, charge, functional groups, aromaticity, and hydrophobicity/hydrophilicity. Significant progress has been made by integrating these processes (ozonation followed by activated carbon (AC) adsorption) but they need further improvement to efficiently target all NOM fractions and the various OMPs. Ozonation transforms the larger NOM molecules into smaller molecular sizes with lower aromaticity and hydrophobicity, subsequently resulting in reduced adsorption. The reduced adsorption of these molecules diminishes their competition against OMP adsorption resulting in increased OMP removal. Adsorption can remove unoxidized pollutants as well as the by-products of ozonation, and some of them are suspected to be human carcinogens. Of the commonly used adsorbents, anion exchange resin and AC, the former has higher affinity towards negatively charged humic fraction and OMPs. Conversely, the latter has higher affinity towards the hydrophobic constituents and smaller sized constituents which diffuse into AC pores and get adsorbed. Biofilm formed by long-term use of AC also contributes to enhanced removal of NOM and OMPs. This paper briefly reviews the currently available literature on removing NOM and OMPs by the ozonation/adsorption integrated process. It also suggests a new method for further increasing the efficiency of this process.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Humans , Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
2.
Chemosphere ; 261: 127549, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32707322

ABSTRACT

Reverse osmosis concentrate (ROC) generated as a waste stream during reverse osmosis treatment of reclaimed wastewater, presents significant disposal challenges. This is because it causes environmental pollution when it is disposed to lands and natural water bodies. A long-term dynamic adsorption experiment was conducted by passing ROC from a wastewater reclamation plant, firstly through a granular activated carbon (GAC) column, and subsequently through an anion exchange resin (Purolite) column, for the removal of two major ROC pollutants, namely dissolved organic carbon (DOC) and microorganic pollutants (MOP). GAC removed most of the smaller-sized low molecular weight neutrals and building block fractions as well as the hydrophobic fraction of DOC with much less removal by the subsequent Purolite column. In contrast, the humics fraction was less well removed by the GAC column; however, Purolite column removed all that was remaining of this fraction. This study demonstrated that combining adsorbents having different affinities towards a variety of DOC fractions constitute an effective method of taking advantage of their different properties and achieving larger DOC removals. Almost 100% of all 17 MOPs were removed by the GAC column, even after 2880 bed volumes of continuous use. This contrasted with the DOC fractions' removal which was much lower.


Subject(s)
Anion Exchange Resins , Wastewater/chemistry , Water Purification/methods , Adsorption , Charcoal/chemistry , Environmental Pollutants , Filtration , Hydrophobic and Hydrophilic Interactions , Osmosis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
3.
Water Res ; 155: 106-114, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30831421

ABSTRACT

Although reverse osmosis produces high quality reusable water from wastewater the rejected concentrate (ROC) poses potentially serious health hazards to non-target species. This is especially the case when it is disposed into aquatic environments due to the presence of high concentrations of dissolved natural organics, micro-organic pollutants (MOPs) and other pollutants. In batch and column studies we found that granular activated carbon (GAC) was very effective in simultaneously removing dissolved organic carbon (DOC) and 18 MOPs from ROC. The amounts of all DOC fractions adsorbed (0.01-3 mg/g) were much higher than those of the MOPs (0.01-2.5 µg/g) mainly because ROC contained larger concentrations of DOC fractions than MOPs. However, the partition coefficient which is a measure of the adsorbability was higher for most of the MOPs (0.21-21.6 L/g) than for the DOC fractions (0.01-0.45 L/g). The amount of DOC fraction adsorbed was in the order: humics > low molecular weights > building blocks > biopolymers (following mostly their concentrations in ROC). The partition coefficient was in the order: low molecular weigth nuetrals > humics > building blocks > biopolymers. The MOPs were classified into four groups based on their hydrophobicity (log Kow) and charge. The four positively charged MOPs with high hydrophobicity had the highest amounts adsorbed and partition coefficient, with 95-100% removal in the GAC column. The MOPs that are negatively charged, regardless of their hydrophobicity, had the lowest amounts adsorbed and partition coefficient with 73-94% removal.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Organic Chemicals , Osmosis
4.
Water Sci Technol ; 77(7-8): 1990-1997, 2018 May.
Article in English | MEDLINE | ID: mdl-29722684

ABSTRACT

Reverse osmosis concentrate (ROC) from wastewater reclamation plants have high concentrations of organic and inorganic compounds, which have to be removed before its disposal. Forward osmosis (FO) and nanofiltration (NF) membranes were tested to treat the ROC for possible water reuse. This research investigated the combined and individual influence of organic and inorganic matter on the fouling of NF and FO membranes. The results revealed that the NF membrane removed most of the organic compounds and some inorganics. The study further highlighted that the FO membrane at NF mode removed the majority of the inorganic compounds and some organics from the ROC. A pretreatment of granulated activated carbon (GAC) adsorption removed 90% of the organic compounds from ROC. In addition, GAC adsorption and acid pretreatment of ROC improved the net water permeate flux by 17% when an FO membrane was used in the NF system. Acid treatment (by bringing the pH down to 5) helped to remove inorganic ions. Therefore, the resultant permeate can be recycled back to the RO water reclamation plant to improve its efficiency.


Subject(s)
Wastewater , Water Purification , Filtration , Membranes, Artificial , Organic Chemicals , Osmosis , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...