Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3566, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670953

ABSTRACT

The dipolar interaction can be attractive or repulsive, depending on the position and orientation of the dipoles. Constraining atoms to a plane with their magnetic moment aligned perpendicularly leads to a largely side-by-side repulsion and generates a dipolar barrier which prevents atoms from approaching each other. We show experimentally and theoretically how this can suppress dipolar relaxation, the dominant loss process in spin mixtures of highly magnetic atoms. Using dysprosium, we observe an order of magnitude reduction in the relaxation rate constant, and another factor of ten is within reach based on the models which we have validated with our experimental study. The loss suppression opens up many new possibilities for quantum simulations with spin mixtures of highly magnetic atoms.

2.
Nature ; 614(7946): 54-58, 2023 02.
Article in English | MEDLINE | ID: mdl-36725997

ABSTRACT

Collisional resonances are important tools that have been used to modify interactions in ultracold gases, for realizing previously unknown Hamiltonians in quantum simulations1, for creating molecules from atomic gases2 and for controlling chemical reactions. So far, such resonances have been observed for atom-atom collisions, atom-molecule collisions3-7 and collisions between Feshbach molecules, which are very weakly bound8-10. Whether such resonances exist for ultracold ground-state molecules has been debated owing to the possibly high density of states and/or rapid decay of the resonant complex11-15. Here we report a very pronounced and narrow (25 mG) Feshbach resonance in collisions between two triplet ground-state NaLi molecules. This molecular Feshbach resonance has two special characteristics. First, the collisional loss rate is enhanced by more than two orders of magnitude above the background loss rate, which is saturated at the p-wave universal value, owing to strong chemical reactivity. Second, the resonance is located at a magnetic field where two open channels become nearly degenerate. This implies that the intermediate complex predominantly decays to the second open channel. We describe the resonant loss feature using a model with coupled modes that is analogous to a Fabry-Pérot cavity. Our observations provide strong evidence for the existence of long-lived coherent intermediate complexes even in systems without reaction barriers and open up the possibility of coherent control of chemical reactions.

3.
Science ; 375(6584): 1006-1010, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35239387

ABSTRACT

In this study, we achieved magnetic control of reactive scattering in an ultracold mixture of 23Na atoms and 23Na6Li molecules. In most molecular collisions, particles react or are lost near short range with unity probability, leading to the so-called universal rate. By contrast, the Na + NaLi system was shown to have only ~4% loss probability in a fully spin-polarized state. By controlling the phase of the scattering wave function via a Feshbach resonance, we modified the loss rate by more than a factor of 100, from far below to far above the universal limit. The results are explained in analogy with an optical Fabry-Perot resonator by interference of reflections at short and long range. Our work demonstrates quantum control of chemistry by magnetic fields with the full dynamic range predicted by our models.

4.
Nature ; 580(7802): 197-200, 2020 04.
Article in English | MEDLINE | ID: mdl-32269350

ABSTRACT

Since the original work on Bose-Einstein condensation1,2, the use of quantum degenerate gases of atoms has enabled the quantum emulation of important systems in condensed matter and nuclear physics, as well as the study of many-body states that have no analogue in other fields of physics3. Ultracold molecules in the micro- and nanokelvin regimes are expected to bring powerful capabilities to quantum emulation4 and quantum computing5, owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry6. Quantum gases of ultracold atoms can be created using collision-based cooling schemes such as evaporative cooling, but thermalization and collisional cooling have not yet been realized for ultracold molecules. Other techniques, such as the use of supersonic jets and cryogenic buffer gases, have reached temperatures limited to above 10 millikelvin7,8. Here we show cooling of NaLi molecules to micro- and nanokelvin temperatures through collisions with ultracold Na atoms, with both molecules and atoms prepared in their stretched hyperfine spin states. We find a lower bound on the ratio of elastic to inelastic molecule-atom collisions that is greater than 50-large enough to support sustained collisional cooling. By employing two stages of evaporation, we increase the phase-space density of the molecules by a factor of 20, achieving temperatures as low as 220 nanokelvin. The favourable collisional properties of the Na-NaLi system could enable the creation of deeply quantum degenerate dipolar molecules and raises the possibility of using stretched spin states in the cooling of other molecules.

5.
Phys Rev Lett ; 123(3): 033203, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386451

ABSTRACT

We demonstrate how the combination of oscillating magnetic forces and radio-frequency (rf) pulses endows rf photons with tunable momentum. We observe velocity-selective spin-flip transitions and the associated Doppler shift. Recoil-dressed photons are a promising tool for measurements and quantum simulations, including the realization of gauge potentials and spin-orbit coupling schemes which do not involve optical transitions.

6.
Phys Rev Lett ; 121(13): 133201, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312085

ABSTRACT

We demonstrate the scale up of a symmetric three-path contrast interferometer to large momentum separation. The observed phase stability at separation of 112 photon recoil momenta exceeds the performance of earlier free-space interferometers. In addition to the symmetric interferometer geometry and Bose-Einstein condensate source, the robust scalability of our approach relies on the suppression of undesired diffraction phases through a careful choice of atom optics parameters. The interferometer phase evolution is quadratic with number of recoils, reaching a rate as high as 7×10^{7} rad/s. We discuss the applicability of our method towards a new measurement of the fine-structure constant and a test of QED.

7.
Phys Chem Chem Phys ; 20(7): 4739-4745, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29379932

ABSTRACT

We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential (a3Σ+) of the 23Na6Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet molecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground a3Σ+ potential are reported. We also observe rotational splitting in the lowest vibrational state.

8.
Phys Chem Chem Phys ; 20(7): 4746-4751, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29380828

ABSTRACT

We perform photoassociation spectroscopy in an ultracold 23Na-6Li mixture to study the c3Σ+ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line strength data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented. This is the first observation of the c3Σ+ potential, as well as photoassociation in the NaLi system.

9.
Phys Rev Lett ; 119(14): 143001, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053331

ABSTRACT

We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

10.
Nature ; 543(7643): 91-94, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28252062

ABSTRACT

Supersolidity combines superfluid flow with long-range spatial periodicity of solids, two properties that are often mutually exclusive. The original discussion of quantum crystals and supersolidity focused on solid 4He and triggered extensive experimental efforts that, instead of supersolidity, revealed exotic phenomena including quantum plasticity and mass supertransport. The concept of supersolidity was then generalized from quantum crystals to other superfluid systems that break continuous translational symmetry. Bose-Einstein condensates with spin-orbit coupling are predicted to possess a stripe phase with supersolid properties. Despite several recent studies of the miscibility of the spin components of such a condensate, the presence of stripes has not been detected. Here we observe the predicted density modulation of this stripe phase using Bragg reflection (which provides evidence for spontaneous long-range order in one direction) while maintaining a sharp momentum distribution (the hallmark of superfluid Bose-Einstein condensates). Our work thus establishes a system with continuous symmetry-breaking properties, associated collective excitations and superfluid behaviour.

11.
Phys Rev Lett ; 117(18): 185301, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27835016

ABSTRACT

We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms. We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double-well potential, and does not depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferromagnetic pseudospin texture, which breaks the lattice symmetry similar to a supersolid.

12.
Rev Sci Instrum ; 86(7): 073115, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233364

ABSTRACT

We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

13.
Phys Rev Lett ; 106(15): 153201, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21568554

ABSTRACT

We report on the realization of a stable mixture of ultracold lithium and ytterbium atoms confined in a far-off-resonance optical dipole trap. We observe sympathetic cooling of 6Li by 174Yb and extract the s-wave scattering length magnitude |a(6Li-174Yb)|=(13±3)a0 from the rate of interspecies thermalization. Using forced evaporative cooling of 174Yb, we achieve reduction of the 6Li temperature to below the Fermi temperature, purely through interspecies sympathetic cooling.

SELECTION OF CITATIONS
SEARCH DETAIL
...