Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11935, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789477

ABSTRACT

Carbohydrate markers of immature cells during prenatal human development can be aberrantly expressed in cancers and deserve evaluation as immune targets. A candidate target in Ewing sarcoma is the globo-series ganglioside stage-specific embryonic antigen-4 (SSEA-4). We detected SSEA-4 expression on the cell surface of all of 14 EwS cell lines and in 21 of 31 (68%) primary EwS tumor biopsies. Among paired subpopulations of tumor cells with low versus high SSEA-4 expression, SSEA-4high expression was significantly and consistently associated with functional characteristics of tumor aggressiveness, including higher cell proliferation, colony formation, chemoresistance and propensity to migrate. SSEA-4low versus SSEA-4high expression was not related to expression levels of the EWSR1-FLI1 fusion transcript or markers of epithelial/mesenchymal plasticity. SSEA-4low cells selected from bulk populations regained higher SSEA-4 expression in vitro and during in vivo tumor growth in a murine xenograft model. T cells engineered to express SSEA-4-specific chimeric antigen receptors (CARs) specifically interacted with SSEA-4 positive EwS cells and exerted effective antigen-specific tumor cell lysis in vitro. In conclusion, with its stable expression and functional significance in EwS, SSEA-4 is an attractive therapeutic immune target in this cancer that deserves further evaluation for clinical translation.


Subject(s)
Sarcoma, Ewing , Stage-Specific Embryonic Antigens , Animals , Female , Humans , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Bone Neoplasms/immunology , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Gangliosides , Glycosphingolipids , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/genetics , Stage-Specific Embryonic Antigens/metabolism , Xenograft Model Antitumor Assays
2.
Cancers (Basel) ; 12(5)2020 Apr 26.
Article in English | MEDLINE | ID: mdl-32357417

ABSTRACT

Chimeric antigen receptor (CAR) gene-modified T cells (CAR T cells) can eradicate B cell malignancies via recognition of surface-expressed B lineage antigens. Antigen escape remains a major mechanism of relapse and is a key barrier for expanding the use of CAR T cells towards solid cancers with their more diverse surface antigen repertoires. In this review we discuss strategies by which cancers become amenable to effective CAR T cell therapy despite heterogeneous phenotypes. Pharmaceutical approaches have been reported that selectively upregulate individual target antigens on the cancer cell surface to sensitize antigen-negative subclones for recognition by CARs. In addition, advanced T cell engineering strategies now enable CAR T cells to interact with more than a single antigen simultaneously. Still, the choice of adequate targets reliably and selectively expressed on the cell surface of tumor cells but not normal cells, ideally by driving tumor growth, is limited, and even dual or triple antigen targeting is unlikely to cure most solid tumors. Innovative receptor designs and combination strategies now aim to recruit bystander cells and alternative cytolytic mechanisms that broaden the activity of CAR-engineered T cells beyond CAR antigen-dependent tumor cell recognition.

3.
Mol Ther ; 27(5): 933-946, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30879952

ABSTRACT

Chimeric antigen receptor (CAR) engineering of T cells allows one to specifically target tumor cells via cell surface antigens. A candidate target in Ewing sarcoma is the ganglioside GD2, but heterogeneic expression limits its value. Here we report that pharmacological inhibition of Enhancer of Zeste Homolog 2 (EZH2) at doses reducing H3K27 trimethylation, but not cell viability, selectively and reversibly induces GD2 surface expression in Ewing sarcoma cells. EZH2 in Ewing sarcoma cells directly binds to the promoter regions of genes encoding for two key enzymes of GD2 biosynthesis, and EZH2 inhibition enhances expression of these genes. GD2 surface expression in Ewing sarcoma cells is not associated with distinct in vitro proliferation, colony formation, chemosensitivity, or in vivo tumorigenicity. Moreover, disruption of GD2 synthesis by gene editing does not affect its in vitro behavior. EZH2 inhibitor treatment sensitizes Ewing sarcoma cells to effective cytolysis by GD2-specific CAR gene-modified T cells. In conclusion, we report a clinically applicable pharmacological approach for enhancing efficacy of adoptively transferred GD2-redirected T cells against Ewing sarcoma, by enabling recognition of tumor cells with low or negative target expression.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Gangliosides/genetics , Receptors, Chimeric Antigen/genetics , Sarcoma, Ewing/drug therapy , Antigens, Surface/drug effects , Antigens, Surface/genetics , Benzamides/pharmacology , Biphenyl Compounds , Cell Line, Tumor , Cell Survival/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Gangliosides/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Indoles/pharmacology , Morpholines , Promoter Regions, Genetic/genetics , Pyridones/pharmacology , Receptors, Chimeric Antigen/immunology , Sarcoma, Ewing/genetics , Sarcoma, Ewing/immunology , Sarcoma, Ewing/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
4.
Front Oncol ; 8: 513, 2018.
Article in English | MEDLINE | ID: mdl-30483473

ABSTRACT

Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.

5.
Oncotarget ; 9(5): 6536-6549, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464090

ABSTRACT

Ewing sarcoma (EwS) is an aggressive mesenchymal cancer of bones or soft tissues. The mechanisms by which this cancer interacts with the host immune system to induce tolerance are not well understood. We hypothesized that the non-classical, immune-inhibitory HLA-molecule HLA-G contributes to immune escape of EwS. While HLA-Gpos suppressor T cells were not increased in the peripheral blood of EwS patients, HLA-G was locally expressed on the tumor cells and/or on infiltrating lymphocytes in 16 of 47 pretherapeutic tumor biopsies and in 4 of 12 relapse tumors. HLA-G expression was not associated with risk-related patient variables or response to standard chemotherapy, but with significantly increased numbers of tumor-infiltrating CD3+ T cells compared to HLA-Gneg EwS biopsies. In a mouse model, EwS xenografts after adoptive therapy with tumor antigen-specific CAR T cells strongly expressed HLA-G whereas untreated control tumors were HLA-Gneg. IFN-γ stimulation of EwS cell lines in vitro induced expression of HLA-G protein. We conclude that EwS cells respond to tumor-infiltrating T cells by upregulation of HLA-G, a candidate mediator of local immune escape. Strategies that modulate HLA-G expression in the tumor microenvironment may enhance the efficacy of cellular immunotherapeutics in this cancer.

6.
Pediatr Blood Cancer ; 65(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-28868758

ABSTRACT

BACKGROUND: Programmed cell death 1 (PD-1) receptor engagement on T cells by its ligand programmed cell death ligand 1 (PD-L1) is a key mechanism of immune escape, and antibody blockade of the interaction has emerged as an effective immunotherapeutic strategy in some cancers. The role and relevance of the PD-1 checkpoint in Ewing sarcoma (EwS) is not yet understood. PROCEDURE: Here, we investigated expression of PD-L1 and PD-1 in EwS by immunohistochemistry analysis of pretherapeutic tumor biopsies and in tumor xenografts following treatment with human T cells engineered to express a chimeric antigen receptor (CAR) against the tumor-associated antigen GD2 . PD-L1 surface expression in EwS cell lines was assessed by flow cytometry. RESULTS: PD-L1 expression was not detectable on tumor cells in any of the 60 EwS biopsies. Infiltrating PD-L1 positive T cells were found in one tumor, and four biopsies contained PD-1-positive T cells. Of 13 EwS cell lines, none constitutively expressed PD-L1 on the cell surface. Interferon-γ cytokine stimulation induced upregulation of the ligand on all cell lines. Adoptive therapy with CAR gene-modified T cells in a mouse model did not induce PD-L1 expression in EwS xenografts despite tumor infiltration with PD-1+ CD3+ T cells. CONCLUSIONS: EwS cells can upregulate PD-L1 under inflammatory conditions, but do not express the ligand in the pretherapeutic tumor microenvironment or postexposure to CAR T cells. PD-1 checkpoint blockade alone is thus unlikely to evoke potent immune responses against EwS. Identification of the relevant immune evasion strategies in EwS will be vital for the development of effective immune targeting strategies.


Subject(s)
B7-H1 Antigen/biosynthesis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Sarcoma, Ewing , Up-Regulation , Adolescent , Adult , Biopsy , Cell Line, Tumor , Child , Child, Preschool , Female , Humans , Male , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology
7.
Oncoimmunology ; 6(1): e1250050, 2017.
Article in English | MEDLINE | ID: mdl-28197367

ABSTRACT

Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers.

8.
Pediatr Blood Cancer ; 62(11): 1979-85, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26131572

ABSTRACT

BACKGROUND: Patients with primary metastatic or relapsed Ewing sarcomas (EwS) have a poor prognosis. While inhibitory insulin-like growth factor 1 receptor (IGF-1R)-specific antibodies have shown single agent activity in some patients with refractory disease, effective therapeutic targeting will rely on optimal combinations with conventional or innovative therapies. Specifically, combination of inhibitory IGF-1R antibodies with adoptive transfer of activated natural killer (NK) cells may have therapeutic benefit in EwS without adding toxicity. PROCEDURE: We investigated the in vitro effects of IGF-1R targeting on the immunological profile of EwS cells and on the survival and tumor targeting capacity of K-562-activated NK cells. RESULTS: IGF-1R inhibition reliably reduced EwS cell viability without affecting expression of immune-modulatory and MHC molecules. In NK cells, we observed a significant superior expansion following in vitro activation in the presence of IGF-1R-specific antibodies, while expression of differentiation markers and activating receptors remained unaffected. Activated NK cells coincubated with EwS cells showed potent degranulation responses unaffected by IGF-1R inhibition. These findings were reproducible in a stimulator cell-free NK cell expansion system, suggesting that direct effects of IGF-R1 antibodies on the IGF-R1 pathway in NK cells induce their activation and expansion. CONCLUSIONS: Activated human NK cells respond to IGF-1R inhibition with superior expansion kinetics while maintaining potent antitumor responses against EwS. Combination of adoptive NK cell transfer with IGF-1R targeting may be an efficient means to eliminate minimal residual disease after conventional therapy and thereby rescue patients at the highest risk of relapse.


Subject(s)
Killer Cells, Natural/immunology , Lymphocyte Activation , Receptor, IGF Type 1/antagonists & inhibitors , Sarcoma, Ewing/immunology , Adoptive Transfer , Humans , K562 Cells , Receptor, IGF Type 1/immunology , Sarcoma, Ewing/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...