Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 7: e814, 2022.
Article in English | MEDLINE | ID: mdl-35721670

ABSTRACT

In recent years, the advent of cloud computing has transformed the field of computing and information technology. It has been enabling customers to rent virtual resources and take advantage of various on-demand services with the lowest costs. Despite the advantages of cloud computing, it faces several threats; an example is a distributed denial of service (DDoS) attack, which is considered among the most serious. This article presents real-time monitoring and detection of DDoS attacks on the cloud using a machine learning approach. Naïve Bayes, K-nearest neighbor, decision tree, and random forest machine learning classifiers have been selected to build a predictive model named "Real-Time DDoS flood Attack Monitoring and Detection RT-AMD." The DDoS-2020 dataset was constructed with 70,020 records to evaluate RT-AMD's accuracy. The DDoS-2020 contains three protocols for network/transport-level, which are TCP, DNS, and ICMP. This article evaluates the proposed model by comparing its accuracy with related works. Our model has shown improvement in the results and reached real-time attack detection using incremental learning. The model achieved 99.38% accuracy for the random forest in real-time on the cloud environment and 99.39% on local testing. The RT-AMD was evaluated on the NSL-KDD dataset as well, in which it achieved 99.30% accuracy in real-time in a cloud environment.

2.
Biomed Res Int ; 2018: 5419313, 2018.
Article in English | MEDLINE | ID: mdl-30069472

ABSTRACT

Central-line-associated bloodstream infection (CLABSI) rates are a key quality metric for comparing hospital quality and safety. Manual surveillance systems for CLABSIs are time-consuming and often limited to intensive care units (ICUs). A computer-automated method of CLABSI detection can improve the validity of surveillance. A new web-based, multitiered surveillance system for predicting and reducing CLABSI is proposed. The system has the capability to collect patient-related data from hospital databases and hence predict the patient infection automatically based on knowledge discovery rules and CLABSI decision standard algorithms. In addition, the system has a built-in simulator for generating patients' data records, when needed, offering the capability to train nurses and medical staff for enhancing their qualifications. Applying the proposed system, both CLABSI rates and patient treatment costs can be reduced significantly. The system has many benefits, among which there is the following: it is a web-based system that can collect real patients' data from many IT resources using iPhone, iPad, laptops, Internet, scanners, and hospital databases. These facilities help to collect patients' actual data quickly and safely in electronic format and hence predict CLABSI efficiently. Automation of the patients' data diagnosis process helps in reducing CLABSI detection times. The system is multimedia-based; it uses text, colors, and graphics to enhance patient healthcare report generation and charts. It helps healthcare decision makers to review and approve policies and surveillance plans to reduce and prevent CLABSI.


Subject(s)
Catheter-Related Infections/epidemiology , Internet , Population Surveillance , Catheterization, Central Venous , Child , Cross Infection , Databases, Factual , Female , Forecasting , Hospitals , Humans , Infant, Newborn , Intensive Care Units , Male
3.
Biomed Res Int ; 2017: 3292849, 2017.
Article in English | MEDLINE | ID: mdl-29085836

ABSTRACT

Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety.


Subject(s)
Catheter-Related Infections/epidemiology , Data Mining/methods , Databases, Factual , Catheter-Related Infections/etiology , Catheter-Related Infections/therapy , Humans , Predictive Value of Tests , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...