Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0240169, 2020.
Article in English | MEDLINE | ID: mdl-33027304

ABSTRACT

We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.


Subject(s)
Interleukin Receptor Common gamma Subunit/genetics , Neoplasms, Experimental/pathology , Xenograft Model Antitumor Assays/methods , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Gene Deletion , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasms, Experimental/genetics , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays/standards
2.
Mol Cancer Ther ; 17(11): 2481-2489, 2018 11.
Article in English | MEDLINE | ID: mdl-30206106

ABSTRACT

The rat is the preferred model for toxicology studies, and it offers distinctive advantages over the mouse as a preclinical research model including larger sample size collection, lower rates of drug clearance, and relative ease of surgical manipulation. An immunodeficient rat would allow for larger tumor size development, prolonged dosing and drug efficacy studies, and preliminary toxicologic testing and pharmacokinetic/pharmacodynamic studies in the same model animal. Here, we created an immunodeficient rat with a functional deletion of the Recombination Activating Gene 2 (Rag2) gene, using genetically modified spermatogonial stem cells (SSC). We targeted the Rag2 gene in rat SSCs with TALENs and transplanted these Rag2-deficient SSCs into sterile recipients. Offspring were genotyped, and a founder with a 27 bp deletion mutation was identified and bred to homozygosity to produce the Sprague-Dawley Rag2 - Rag2 tm1Hera (SDR) knockout rat. We demonstrated that SDR rat lacks mature B and T cells. Furthermore, the SDR rat model was permissive to growth of human glioblastoma cell line subcutaneously resulting in successful growth of tumors. In addition, a human KRAS-mutant non-small cell lung cancer cell line (H358), a patient-derived high-grade serous ovarian cancer cell line (OV81), and a patient-derived recurrent endometrial cancer cell line (OV185) were transplanted subcutaneously to test the ability of the SDR rat to accommodate human xenografts from multiple tissue types. All human cancer cell lines showed efficient tumor uptake and growth kinetics indicating that the SDR rat is a viable host for a range of xenograft studies. Mol Cancer Ther; 17(11); 2481-9. ©2018 AACR.


Subject(s)
DNA-Binding Proteins/deficiency , Spermatogonia/cytology , Stem Cells/metabolism , Xenograft Model Antitumor Assays , Animals , B-Lymphocytes/cytology , Base Sequence , Biomarkers/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Gene Knockout Techniques , Genome , Humans , Male , Rats, Sprague-Dawley , Subcutaneous Tissue/pathology , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...