Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 44(3): 201-206, 2019.
Article in English | MEDLINE | ID: mdl-31576068

ABSTRACT

This study examined the relationship of achievable mean dose and percent volumetric overlap of salivary gland with the planning target volume (PTV) in volumetric-modulated arc therapy (VMAT) plan in radiotherapy for a patient with head-and-neck cancer. The aim was to develop a model to predict the viability of planning objectives for both PTV coverage and organs-at-risk (OAR) sparing based on overlap volumes between PTVs and OARs, before the planning process. Forty patients with head-and-neck cancer were selected for this retrospective plan analysis. The patients were treated using 6 MV photons with 2-arc VMAT plan in prescriptions with simultaneous integrated boost in dose of 70 Gy, 63 Gy, and 58.1 Gy to primary tumor sites, high-risk nodal regions, and low-risk nodal regions, respectively, over 35 fractions. A VMAT plan was generated using Varian Eclipse (V13.6), in optimization with biological-based generalized equivalent uniform dose (gEUD) objective for OARs and targets. Target dose coverage (D 95, D max, conformity index) and salivary gland dose (D mean and D max) were evaluated in those plans. With a range of volume overlaps between salivary glands and PTVs and dose constraints applied, results showed that dose D 95 for each PTV was adequate to satisfy D 95 >95% of the prescription. Mean dose to parotid <26 Gy could be achieved with <20% volumetric overlap with PTV58 (parotid-PTV58). On an average, the D mean was seen at 15.6 Gy, 21.1 Gy, and 24.2 Gy for the parotid-PTV58 volume at <5%, <10%, and <20%, respectively. For submandibular glands (SMGs), an average D mean of 27.6 Gy was achieved in patients having <10% overlap with PTV58, and 36.1 Gy when <20% overlap. Mean doses on parotid and SMG were linearly correlated with overlap volume (regression R 2 = 0.95 and 0.98, respectively), which were statistically significant (P < 0.0001). This linear relationship suggests that the assessment of the structural overlap might provide prospective for achievable planning objectives in the head-and-neck plan.

2.
Med Phys ; 44(8): 3888-3898, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28500790

ABSTRACT

PURPOSE: The accuracy of a six degree of freedom (6DoF) couch was evaluated using a novel method. METHODS: Cone beam CT (CBCT) images of a 3D phantom (IsoCal) were acquired with different, known combinations of couch pitch and roll angles. Pitch and roll angles between the maximum allowable values of 357 and 3 degrees were tested in one degree increments. A total of 49 combinations were tested at 0 degrees of yaw (couch rotation angle). The 3D positions of 16 tungsten carbide ball bearings (BBs), each 4 mm in diameter and arranged in a known geometry within the IsoCal phantom, were determined in the 49 image sets with in-house software. The BB positions at different rotation angles were determined using a rotation matrix from the original BB positions at zero pitch and roll angles. A linear least squares fit method estimated the rotation angles and differences between detected and nominal rotation angles were calculated. This study was conducted for the case with and without extra weight on the couch. Couch walk shifts for the system were investigated using eight combinations of rotation, roll and pitch. RESULTS: A total of 49 CBCT images with voxel sizes 0.5 × 0.5 × 1.0 mm3 were taken for the case without extra weight on the couch. The 16 BBs were determined to evaluate the isocenter translation and rotation differences between the calculated and nominal couch values. Among all 49 calculations, the maximum rotation angle differences were 0.10 degrees for pitch, 0.15 degrees for roll and 0.09 degrees for yaw. The corresponding mean and standard deviation values were 0.028 ± 0.032, -0.043 ± 0.058, and -0.009 ± 0.033 degrees. The maximum translation differences were 0.3 mm in the left-right direction, 0.5 mm in the anterior-posterior direction and 0.4 mm in the superior-inferior direction. The mean values and corresponding standard deviations were 0.07 ± 0.12, -0.05 ± 0.25, and -0.12±0.14 mm for the planes described above. With an 80 kg phantom on the couch, the maximum translation shift was 0.69 mm. The couch walk translation shifts were less than 0.1 mm and rotation shifts were less than 0.1 degree. CONCLUSIONS: Errors of a new 6DoF couch were tested using CBCT images of a 3D phantom. The rotation errors were less than 0.3 degree and the translation errors were less than or equal to 0.8 mm in each direction. This level of accuracy is warranted for clinical radiotherapy utilization including stereotactic radiosurgery.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiosurgery , Humans , Rotation
3.
Pract Radiat Oncol ; 7(2): e135-e144, 2017.
Article in English | MEDLINE | ID: mdl-28274404

ABSTRACT

PURPOSE: Optically stimulated luminescent dosimeters (OSLDs) are utilized for in vivo dosimetry (IVD) of modern radiation therapy techniques such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Dosimetric precision achieved with conventional techniques may not be attainable. In this work, we measured accuracy and precision for a large sample of clinical OSLD-based IVD measurements. METHODS AND MATERIALS: Weekly IVD measurements were collected from 4 linear accelerators for 2 years and were expressed as percent differences from planned doses. After outlier analysis, 10,224 measurements were grouped in the following way: overall, modality (photons, electrons), treatment technique (3-dimensional [3D] conformal, field-in-field intensity modulation, inverse-planned IMRT, and VMAT), placement location (gantry angle, cardinality, and central axis positioning), and anatomical site (prostate, breast, head and neck, pelvis, lung, rectum and anus, brain, abdomen, esophagus, and bladder). Distributions were modeled via a Gaussian function. Fitting was performed with least squares, and goodness-of-fit was assessed with the coefficient of determination. Model means (µ) and standard deviations (σ) were calculated. Sample means and variances were compared for statistical significance by analysis of variance and the Levene tests (α = 0.05). RESULTS: Overall, µ ± σ was 0.3 ± 10.3%. Precision for electron measurements (6.9%) was significantly better than for photons (10.5%). Precision varied significantly among treatment techniques (P < .0001) with field-in-field lowest (σ = 7.2%) and IMRT and VMAT highest (σ = 11.9% and 13.4%, respectively). Treatment site models with goodness-of-fit greater than 0.90 (6 of 10) yielded accuracy within ±3%, except for head and neck (µ = -3.7%). Precision varied with treatment site (range, 7.3%-13.0%), with breast and head and neck yielding the best and worst precision, respectively. Placement on the central axis of cardinal gantry angles yielded more precise results (σ = 8.5%) compared with other locations (range, 10.5%-11.4%). CONCLUSIONS: Accuracy of ±3% was achievable. Precision ranged from 6.9% to 13.4% depending on modality, technique, and treatment site. Simple, standardized locations may improve IVD precision. These findings may aid development of patient-specific tolerances for OSLD-based IVD.


Subject(s)
In Vivo Dosimetry , Neoplasms/radiotherapy , Optically Stimulated Luminescence Dosimetry/instrumentation , Radiation Dosimeters , Radiotherapy, Conformal/instrumentation , Data Accuracy , Female , Humans , Male , Models, Theoretical , Normal Distribution , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/instrumentation , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...