Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 139: 106719, 2023 10.
Article in English | MEDLINE | ID: mdl-37473478

ABSTRACT

Caffeine is one of the privileged natural products that shows numerous effects on the central nervous system. Herein, thirty-one caffeine-based amide derivatives were synthesized and evaluated in vitro for their anticholinesterase activity. The introduction of the amide group to the caffeine core augmented its anticholinesterase activity from an IC50 value of 128 to 1.32 µM (derivative, 6i). The SAR study revealed that N7 substitution on caffeine core is favorable over N1, and the presence of amide 'carbonyl' as a part of the linker contributes to the biological activity. The caffeine core of 6i exhibits interactions with the peripheral anionic site, whereas the N-benzyl ring fits nicely inside the catalytic anionic site. Analog 6i inhibits AChE in a mixed-type mode (Ki 4.58 µM) and crosses the BBB in an in-vitro PAMPA assay. Compound 6i has a descent metabolic stability in MLM (>70% remaining after 30 min) and favorable oral pharmacokinetics in Swiss albino mice.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Mice , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/metabolism , Caffeine/pharmacology , Acetylcholinesterase/metabolism , Blood-Brain Barrier , Amides/pharmacology , Amides/metabolism , Molecular Docking Simulation , Alzheimer Disease/metabolism , Structure-Activity Relationship
2.
Chem Biol Interact ; 382: 110605, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37419298

ABSTRACT

In spite of unprecedented advances in modern cancer therapy, there is still a dearth of targeted therapy to circumvent triple-negative breast cancer (TNBC). Paclitaxel is the front-line therapy against TNBC, but the main constraints of its treatment are dose-related adverse effects and emerging chemoresistance. In this context, glabridin (phytoconstituent from Glycyrrhiza glabra) is reported to hit multiple signalling pathways at the in-vitro level, but hardly any information is known at the in-vivo level. We aimed here to elucidate glabridin potential with an underlying mechanism in combination with a low dose of paclitaxel using a highly aggressive mouse mammary carcinoma model. Glabridin potentiated the anti-metastatic efficacy of paclitaxel by substantially curtailing tumor burden and diminishing lung nodule formation. Moreover, glabridin remarkably attenuated epithelial-mesenchymal transition (EMT) traits of hostile cancer cells via up-regulating (E-cadherin & occludin) and down-regulating (Vimentin & Zeb1) vital EMT markers. Besides, glabridin amplified apoptotic induction effect of paclitaxel in tumor tissue by declining or elevating pro-apoptotic (Procaspase-9 or Cleaved Caspase-9 & Bax) and reducing anti-apoptotic (Bcl-2) markers. Additionally, concomitant treatment of glabridin and paclitaxel predominantly lessened CYP2J2 expression with marked lowering of epoxyeicosatrienoic acid (EET)'s levels in tumor tissue to reinforce the anti-tumor impact. Simultaneous administration of glabridin with paclitaxel notably enhanced plasma exposure and delayed clearance of paclitaxel, which was mainly arbitrated by CYP2C8-mediated slowdown of paclitaxel metabolism in the liver. The fact of intense CYP2C8 inhibitory action of glabridin was also ascertained using human liver microsomes. Concisely, glabridin plays a dual role in boosting anti-metastatic activity by augmenting paclitaxel exposure via CYP2C8 inhibition-mediated delaying paclitaxel metabolism and limiting tumorigenesis via CYP2J2 inhibition-mediated restricting EETs level. Considering the safety, reported protective efficacy, and the current study results of boosted anti-metastatic effects, further investigations are warranted as a promising neoadjuvant therapy for crux paclitaxel chemoresistance and cancer recurrence.


Subject(s)
Paclitaxel , Triple Negative Breast Neoplasms , Mice , Animals , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Cytochrome P-450 CYP2J2 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cytochrome P-450 CYP2C8 , Eicosanoids , Liver , Cell Line, Tumor
3.
ACS Chem Neurosci ; 14(6): 1193-1219, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36812360

ABSTRACT

The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and ß-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 µM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 µM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aß self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Blood-Brain Barrier/metabolism , Cholinesterase Inhibitors/chemistry , Amines , Structure-Activity Relationship , Mice, Inbred C57BL , Scopolamine/pharmacology , Scopolamine/therapeutic use , Amyloid beta-Peptides/metabolism , Drug Design , Molecular Docking Simulation
4.
Nat Prod Res ; 37(22): 3758-3765, 2023.
Article in English | MEDLINE | ID: mdl-36469694

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a critical form of acute lung injury (ALI). Here, we investigated the effect of a defined combination of ten pure phytochemicals in equal proportions of weight (NPM) from plants, recommended by Ayurveda for any protective action against lipopolysaccharide (LPS)-induced ALI. Results indicate that NPM markedly improved protein and neutrophil contents, myeloperoxidase and hydroxyproline levels, oxidative stress markers (glutathione and malonaldehyde), inflammatory cytokines, and genes (IL-6, TNF-α, TGF-ß, and NF-κB/IκBα) in BALF/lung tissue. The histopathological examination of the lung revealed the shielding effect of NPM against ALI. NPM exhibited a protective effect on the lung by reducing oxidative stress and inhibiting inflammation. A substantial drop in favipiravir's oral exposure was observed in ALI-state compared to normal-state, but oral exposure upon NPM treatment in ALI-state followed similar behaviour of favipiravir alike normal-state without NPM treatment. Overall, results offer potential insight into Ayurvedic recommendations for immunity boosting during ALI situations.

5.
Drug Dev Res ; 84(1): 121-140, 2023 02.
Article in English | MEDLINE | ID: mdl-36461610

ABSTRACT

Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 µM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 µM, respectively. The ether analog also inhibits self-aggregation of Aß and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.


Subject(s)
Alzheimer Disease , Berberine , Rats , Animals , Horses , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Berberine/pharmacology , Structure-Activity Relationship , Ether/therapeutic use , Molecular Docking Simulation , Rats, Wistar , Cholinesterase Inhibitors , Ethyl Ethers/therapeutic use , Ethers/therapeutic use , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...