Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(38)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38848722

ABSTRACT

We report a new compound, Zr2S2C, belonging to the transition metal carbo-chalcogenide (TMCC) family. Through first-principles calculations, our analysis of phonon dispersion spectra indicates that the compound is dynamically stable in both bulk and monolayer forms. We systematically investigated the electronic structure, phonon dispersion, and electron-phonon coupling (EPC) driven superconducting properties in bulk and monolayer Zr2S2C. The results demonstrate the metallic character of bulk Zr2S2C, with a weak EPC strength (λ) of 0.41 and superconducting critical temperature (Tc) of ∼3 K. The monolayer Zr2S2C has an enhancedλof 0.62 andTcof ∼6.4 K. The increasedλvalue in the monolayer results from the softening of the acoustic phonon mode. We found that when biaxial strain is applied, the low energy acoustic phonon mode in monolayer becomes even softer. This softening leads to a transformation of the Zr2S2C monolayer from its initial weak coupling state (λ= 0.62) to a strongly coupled state, resulting in an increasedλvalue of 1.33. Consequently, the superconducting critical temperature experiences a twofold increase. These findings provide a theoretical framework for further exploration of the layered two-dimensional TMCC family, in addition to offering valuable insights.

2.
J Phys Condens Matter ; 36(24)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38411011

ABSTRACT

Superconductivity in two-dimensional materials has gained significant attention in the last few years. In this work, we report phonon-mediated superconductivity investigations in monolayer Tungsten monofluoride (WF) by solving anisotropic Migdal Eliashberg equations as implemented in EPW. By employing first-principles calculations, our examination of phonon dispersion spectra suggests that WF is dynamically stable. Our results show that WF has weak electron-phonon coupling (EPC) strength (λ) of 0.49 with superconducting transition temperature (Tc) of 2.6 K. A saddle point is observed at 0.11 eV below the Fermi level (EF) of WF, which corresponds to the Van Hove singularity (VHS). On shifting the Fermi level to the VHS by hole doping (3.7 × 1014cm-2), the EPC strength increases to 0.93, which leads to an increase in theTcto 11 K. However, the superconducting transition temperature of both pristine and doped WF increases to approximately 7.2 K and 17.2 K, respectively, by applying the Full Bandwidth (FBW) anisotropic Migdal-Eliashberg equations. Our results provide a platform for the experimental realization of superconductivity in WF and enhancement of the superconducting transition temperature by adjusting the position ofEFto the VHS.

SELECTION OF CITATIONS
SEARCH DETAIL
...