Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Transl Med ; 22(1): 320, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555449

ABSTRACT

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.


Subject(s)
Blood-Brain Barrier , Glioma , Humans , Rats , Child , Male , Mice , Animals , Disease Models, Animal , Rats, Sprague-Dawley , Brain Stem , Drug Delivery Systems/methods , Magnetic Resonance Imaging , Glioma/radiotherapy , Microbubbles , Brain
2.
Cancer Sci ; 114(7): 2761-2773, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37017116

ABSTRACT

Chemotherapy, in combination with immune checkpoint blockade (ICB) targeting to programmed death-1 (PD-1) or its ligand PD-L1, is one of the first-line treatments for patients with advanced non-small-cell lung cancer (NSCLC). However, a large proportion of patients, especially those with PD-L1 negative tumors, do not benefit from this treatment. This may be due to the existence of multiple immunosuppressive mechanisms other than the PD-1/PD-L1 axis. Human leukocyte antigen-G (HLA-G) has been identified as an immune checkpoint protein (ICP) and a neoexpressed tumor-associated antigen (TAA) in a large proportion of solid tumors. In this study, we evaluated the induction of HLA-G as well as PD-L1 using sublethal doses of chemotherapeutics including pemetrexed in different NSCLC cell lines. Except for gefitinib, most of the chemotherapeutic agents enhanced HLA-G and PD-L1 expression in a dose-dependent manner, whereas pemetrexed and carboplatin treatments showed the most consistent upregulation of PD-L1 and HLA-G in each cell line. In addition to protein levels, a novel finding of this study is that pemetrexed enhanced the glycosylation of HLA-G and PD-L1. Pemetrexed potentiated the cytotoxicity of cytotoxic T lymphocytes (CTLs) to treat NSCLC. Both in vitro and in vivo experiments revealed that CTL-mediated cytotoxicity was most pronounced when both anti-PD-L1 and anti-HLA-G ICBs were combined with pemetrexed treatment. In conclusion, anti-HLA-G could be an intervention strategy in addition to the anti-PD-1/PD-L1 pathway for NSCLC. Moreover, dual targeting of PD-L1 and HLA-G combined with pemetrexed might have a better extent of CTL-based immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , T-Lymphocytes, Cytotoxic , Pemetrexed/pharmacology , Pemetrexed/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/metabolism
3.
Adv Sci (Weinh) ; 10(17): e2206856, 2023 06.
Article in English | MEDLINE | ID: mdl-37078788

ABSTRACT

HLA-G is considered as an immune checkpoint protein and a tumor-associated antigen. In the previous work, it is reported that CAR-NK targeting of HLA-G can be used to treat certain solid tumors. However, the frequent co-expression of PD-L1 and HLA-G) and up-regulation of PD-L1 after adoptive immunotherapy may decrease the effectiveness of HLA-G-CAR. Therefore, simultaneous targeting of HLA-G and PD-L1 by multi-specific CAR could represent an appropriate solution. Furthermore, gamma-delta T (γδT) cells exhibit MHC-independent cytotoxicity against tumor cells and possess allogeneic potential. The utilization of nanobodies offers flexibility for CAR engineering and the ability to recognize novel epitopes. In this study, Vδ2 γδT cells are used as effector cells and electroporated with an mRNA-driven, nanobody-based HLA-G-CAR with a secreted PD-L1/CD3ε Bispecific T-cell engager (BiTE) construct (Nb-CAR.BiTE). Both in vivo and in vitro experiments reveal that the Nb-CAR.BiTE-γδT cells could effectively eliminate PD-L1 and/or HLA-G-positive solid tumors. The secreted PD-L1/CD3ε Nb-BiTE can not only redirect Nb-CAR-γδT but also recruit un-transduced bystander T cells against tumor cells expressing PD-L1, thereby enhancing the activity of Nb-CAR-γδT therapy. Furthermore, evidence is provided that Nb-CAR.BiTE redirectes γδT into tumor-implanted tissues and that the secreted Nb-BiTE is restricted to the tumor site without apparent toxicity.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , B7-H1 Antigen/metabolism , HLA-G Antigens/metabolism , Receptors, Chimeric Antigen/metabolism
4.
iScience ; 26(3): 106089, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36876120

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1ß secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.

5.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34663641

ABSTRACT

BACKGROUND: Immunotherapy against solid tumors has long been hampered by the development of immunosuppressive tumor microenvironment, and the lack of a specific tumor-associated antigen that could be targeted in different kinds of solid tumors. Human leukocyte antigen G (HLA-G) is an immune checkpoint protein (ICP) that is neoexpressed in most tumor cells as a way to evade immune attack and has been recently demonstrated as a useful target for chimeric antigen receptor (CAR)-T therapy of leukemia by in vitro studies. Here, we design and test for targeting HLA-G in solid tumors using a CAR strategy. METHODS: We developed a novel CAR strategy using natural killer (NK) cell as effector cells, featuring enhanced cytolytic effect via DAP12-based intracellular signal amplification. A single-chain variable fragment (scFv) against HLA-G is designed as the targeting moiety, and the construct is tested both in vitro and in vivo on four different solid tumor models. We also evaluated the synergy of this anti-HLA-G CAR-NK strategy with low-dose chemotherapy as combination therapy. RESULTS: HLA-G CAR-transduced NK cells present effective cytolysis of breast, brain, pancreatic, and ovarian cancer cells in vitro, as well as reduced xenograft tumor growth with extended median survival in orthotopic mouse models. In tumor coculture assays, the anti-HLA-G scFv moiety promotes Syk/Zap70 activation of NK cells, suggesting reversal of the HLA-G-mediated immunosuppression and hence restoration of native NK cytolytic functions. Tumor expression of HLA-G can be further induced using low-dose chemotherapy, which when combined with anti-HLA-G CAR-NK results in extensive tumor ablation both in vitro and in vivo. This upregulation of tumor HLA-G involves inhibition of DNMT1 and demethylation of transporter associated with antigen processing 1 promoter. CONCLUSIONS: Our novel CAR-NK strategy exploits the dual nature of HLA-G as both a tumor-associated neoantigen and an ICP to counteract tumor spread. Further ablation of tumors can be boosted when combined with administration of chemotherapeutic agents in clinical use. The readiness of this novel strategy envisions a wide applicability in treating solid tumors.


Subject(s)
Antigens, Neoplasm/immunology , HLA Antigens/metabolism , Immunosuppression Therapy/methods , Immunotherapy/methods , Killer Cells, Natural/metabolism , Neoplasms/immunology , Receptors, Chimeric Antigen/metabolism , Animals , Disease Models, Animal , Humans , Male , Mice , Transfection , Tumor Microenvironment
6.
Sensors (Basel) ; 21(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066507

ABSTRACT

This aim of this study was to find effective spectral bands for the early detection of oral cancer. The spectral images in different bands were acquired using a self-made portable light-emitting diode (LED)-induced autofluorescence multispectral imager equipped with 365 and 405 nm excitation LEDs, emission filters with center wavelengths of 470, 505, 525, 532, 550, 595, 632, 635, and 695 nm, and a color image sensor. The spectral images of 218 healthy points in 62 healthy participants and 218 tumor points in 62 patients were collected in the ex vivo trials at China Medical University Hospital. These ex vivo trials were similar to in vivo because the spectral images of anatomical specimens were immediately acquired after the on-site tumor resection. The spectral images associated with red, blue, and green filters correlated with and without nine emission filters were quantized by four computing method, including summated intensity, the highest number of the intensity level, entropy, and fractional dimension. The combination of four computing methods, two excitation light sources with two intensities, and 30 spectral bands in three experiments formed 264 classifiers. The quantized data in each classifier was divided into two groups: one was the training group optimizing the threshold of the quantized data, and the other was validating group tested under this optimized threshold. The sensitivity, specificity, and accuracy of each classifier were derived from these tests. To identify the influential spectral bands based on the area under the region and the testing results, a single-layer network learning process was used. This was compared to conventional rules-based approaches to show its superior and faster performance. Consequently, four emission filters with the center wavelengths of 470, 505, 532, and 550 nm were selected by an AI-based method and verified using a rule-based approach. The sensitivities of six classifiers using these emission filters were more significant than 90%. The average sensitivity of these was about 96.15%, the average specificity was approximately 69.55%, and the average accuracy was about 82.85%.


Subject(s)
Mouth Neoplasms , China , Humans , Liver , Mouth Neoplasms/diagnostic imaging
7.
Sci Rep ; 11(1): 6521, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753753

ABSTRACT

Drug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Stem Neoplasms/drug therapy , Drug Delivery Systems , Glioma/drug therapy , Animals , Biological Transport/drug effects , Brain Stem/diagnostic imaging , Brain Stem/drug effects , Brain Stem Neoplasms/diagnostic imaging , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Disease Models, Animal , Etoposide/pharmacology , Evans Blue/pharmacology , Gadolinium/pharmacology , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Humans , Magnetic Resonance Imaging , Mice , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/pharmacology , Pons/diagnostic imaging , Pons/drug effects , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/pharmacology , Ultrasonography
8.
Int J Radiat Oncol Biol Phys ; 110(2): 539-550, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33346092

ABSTRACT

PURPOSE: Glioblastoma (GBM) is a devastating disease. With the current treatment of surgery followed by chemoradiation, outcomes remain poor, with median survival of only 15 months and a 5-year survival rate of 6.8%. A challenge in treating GBM is the heterogeneous integrity of the blood-brain barrier (BBB), which limits the bioavailability of systemic therapies to the brain. There is a growing interest in enhancing drug delivery by opening the BBB with the use of focused ultrasound (FUS). We hypothesize that an FUS-mediated BBB opening can enhance the delivery of etoposide for a therapeutic benefit in GBM. METHODS AND MATERIALS: A murine glioma cell line (Pdgf+, Pten-/-, P53-/-) was orthotopically injected into B6(Cg)-Tyrc-2J/J mice to establish the syngeneic GBM model for this study. Animals were treated with FUS and microbubbles to open the BBB to enhance the delivery of systemic etoposide. Magnetic resonance (MR) imaging was used to evaluate the BBB opening and tumor progression. Liquid chromatography tandem mass spectrometry was used to measure etoposide concentrations in the intracranial tumors. RESULTS: The murine glioma cell line is sensitive to etoposide in vitro. MR imaging and passive cavitation detection demonstrate the safe and successful BBB opening with FUS. The combined treatment of an FUS-mediated BBB opening and etoposide decreased tumor growth by 45% and prolonged median overall survival by 6 days: an approximately 30% increase. The FUS-mediated BBB opening increased the brain tumor-to-serum ratio of etoposide by 3.5-fold and increased the etoposide concentration in brain tumor tissue by 8-fold compared with treatment without ultrasound. CONCLUSIONS: The current study demonstrates that BBB opening with FUS increases intratumoral delivery of etoposide in the brain, resulting in local control and overall survival benefits.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Blood-Brain Barrier/physiology , Brain Neoplasms/drug therapy , Etoposide/administration & dosage , Glioblastoma/drug therapy , Ultrasonography, Interventional/methods , Animals , Antineoplastic Agents, Phytogenic/analysis , Blood-Brain Barrier/diagnostic imaging , Brain Neoplasms/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Cell Line, Tumor , Chromatography, Liquid , Contrast Media/administration & dosage , Disease Progression , Etoposide/analysis , Glioblastoma/chemistry , Glioblastoma/diagnostic imaging , Glioblastoma/mortality , Magnetic Resonance Imaging , Male , Mice , Microbubbles , Sonication , Tandem Mass Spectrometry
9.
Cancer Lett ; 493: 133-142, 2020 11 28.
Article in English | MEDLINE | ID: mdl-32861705

ABSTRACT

The dysregulation of microRNA expression in cancer has been associated with the epithelial-mesenchymal transition (EMT) that triggers invasive ability and increases therapeutic resistance. Here, we determined the microRNA expression profile of seven tumor tissues from patients with glioblastoma multiforme (GBM) by use of microRNA array analysis. We discovered that microRNA-7 (miR-7) is consistently downregulated in all tumor samples. Using the microRNA.org algorithm, the T-box 2 gene (TBX2) was identified as a candidate gene targeted by miR-7. In contrast to miR-7, TBX2 had an increased expression in GBM tumors and was linked to poor prognosis. We confirmed that TBX2 mRNA and protein production are significantly repressed by overexpressing miR-7 in GBM cells in vitro. The reporter assay showed that miR-7 significantly represses the signal from luciferase with the 3' UTR of TBX2. Furthermore, TBX2 overexpression decreased E-cadherin expression and increased Vimentin expression, causing an increasing number of invaded cells in the invasion assay, as well as pulmonary metastasis in vivo. Our findings demonstrated that overexpression of TBX2 in GBM tumors via the downregulation of miR-7 leads to EMT induction and increased cell invasion.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , MicroRNAs/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , 3' Untranslated Regions , Animals , Antigens, CD/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Male , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Prognosis , Vimentin/metabolism
10.
Int J Cancer ; 145(9): 2478-2487, 2019 11 01.
Article in English | MEDLINE | ID: mdl-30963568

ABSTRACT

The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Membrane Glycoproteins/genetics , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/genetics , Sulfotransferases/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Invasiveness/pathology , RNA Interference , RNA, Small Interfering/genetics
11.
Oncogene ; 38(26): 5113-5126, 2019 06.
Article in English | MEDLINE | ID: mdl-30867567

ABSTRACT

Keratin intermediate filament (IF) is one component of cellular architectures, which provides necessary mechanical support to conquer environmental stresses. Recent findings reveal its involvement in mechano-transduction and the associated stem cell reprogramming, suggesting the possible roles in cancer development. Here, we report t(12;17)(q13.13;q21.2) chromosomal rearrangement as the most common fusion event in OSCC, resulting in a variety of inter-keratin fusions. Junction site mapping verified 9 in-frame K6-K14 variants, three of which were correlated with lymph node invasion, late tumor stages (T3/T4) and shorter disease-free survival times. When expressed in OSCC cells, those fusion variants disturbed wild-type K14 organization through direct interaction or aggregate formation, leading to perinuclear structure loss and nuclear deformation. Protein array analyses showed the ability of K6-K14 variant 7 (K6-K14/V7) to upregulate TGF-ß and G-CSF signaling, which contributed to cell stemness, drug tolerance, and cell aggressiveness. Notably, K6-K14/V7-expressing cells easily adapted to a soft 3-D culture condition in vitro and formed larger, less differentiated tumors in vivo. In addition to the anti-mechanical-stress activity, our data uncover oncogenic functionality of novel keratin filaments caused by gene fusions during OSCC development.


Subject(s)
Carcinoma, Squamous Cell/pathology , Keratin-14/physiology , Keratin-6/physiology , Mouth Neoplasms/pathology , Neoplastic Stem Cells/physiology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Squamous Cell/genetics , Cell Dedifferentiation/genetics , Humans , Keratin-14/genetics , Keratin-6/genetics , Male , Mice , Mice, Nude , Mouth Neoplasms/genetics , NIH 3T3 Cells , Neoplasm Invasiveness , Neoplastic Stem Cells/metabolism , Recombinant Fusion Proteins/genetics , Tumor Cells, Cultured
12.
Front Immunol ; 9: 727, 2018.
Article in English | MEDLINE | ID: mdl-29910795

ABSTRACT

Background: Glioblastoma (GBM) is the most common and lethal primary malignant glioma in adults. Dendritic cell (DC) vaccines have demonstrated promising results in GBM clinical trials. However, some patients do not respond well to DC therapy, with survival rates similar to those of conventional therapy. We retrospectively analyzed clinical and laboratory data to evaluate the factors affecting vaccine treatment. Methods: Forty-seven patients with de novo GBM were enrolled at China Medical University Hospital between 2005 and 2010 and divided into two subgroups. One subgroup of 27 patients received postsurgical adjuvant immunotherapy with autologous dendritic cell/tumor antigen vaccine (ADCTA) in conjunction with conventional treatment of concomitant chemoradiotherapy (CCRT) with temozolomide. The other 20 patients received only postsurgical conventional treatment without immunotherapy. Immunohistochemistry for CD45, CD4, CD8, programed death ligand 1 (PD-L1), and programed death 1 (PD-1) was performed on sections of surgical tumor specimens and peripheral blood mononuclear cells (PBMCs). Pearson's correlation, Cox proportional hazard model, and Kaplan-Meier analyses were performed to examine the correlations between the prognostic factors and survival rates. Results: Younger age (<57 years), gross total resection, and CCRT and PD-1+ lymphocyte counts were significant prognostic factors of overall survival (OS) and progression-free survival (PFS) in the ADCTA group. Sex, CD45+ lymphocyte count, CD4+ or CD8+ lymphocyte count, tumor PD-L1 expression, isocitrate dehydrogenase 1 mutation, and O6 methylguanine-DNA methyltransferase promoter methylation status were not significant factors in both groups. In the ADCTA group, patients with tumor-infiltrating lymphocytes (TILs) with a lower PD-1+/CD8+ ratio (≤0.21) had longer OS and PFS (median OS 60.97 months, P < 0.001 and PFS 11.2 months, P < 0.008) compared to those with higher PD-1+/CD8+ ratio (>0.21) (median OS 20.07 months, P < 0.001 and PFS 4.43 months, P < 0.008). Similar results were observed in patients' PBMCs; lymphocyte counts with lower PD-1+/CD8+ ratio (≤0.197) had longer OS and PFS. There was a significant correlation of PD-1+/CD8+ ratio between TILs and PBMCs (Pearson's correlation R2 = 0.6002, P < 0.001). By contrast, CD4-, CD8-, but PD-1+, CD45+ tumor-infiltrating lymphocytes have no impact on OS and PFS (P = 0.073 and P = 0.249, respectively). Conclusion: For patients receiving DC vaccine adjuvant therapy, better outcomes are predicted in patients with younger age, with TILs or PBMCs with lower PD-1+/CD8+ ratio, with gross tumor resection, and receiving CCRT.


Subject(s)
Brain Neoplasms/therapy , Cancer Vaccines/therapeutic use , Dendritic Cells/immunology , Glioblastoma/therapy , Immunotherapy , Adolescent , Adult , Aged , Antigens, CD/immunology , B7-H1 Antigen/immunology , Female , Humans , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , Treatment Outcome , Young Adult
13.
Int J Biol Sci ; 12(7): 786-98, 2016.
Article in English | MEDLINE | ID: mdl-27313493

ABSTRACT

One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Fenofibrate/therapeutic use , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Hexokinase/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Oxygen Consumption/drug effects
14.
Oncotarget ; 7(13): 16760-72, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26919236

ABSTRACT

The Tid1 protein is a DnaJ co-chaperone that has two alternative splicing isoforms: Tid1 long form (Tid1-L) and Tid1 short form (Tid1-S). Recent studies have shown that Tid1-L functions as a tumor suppressor by decreasing EGFR signaling in various cancers, including head and neck cancer and non-small cell lung cancer (NSCLC). However, the molecular mechanism responsible for regulating the alternative splicing of Tid1 is not yet known. Two splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNP) A1 and A2, participate in alternative splicing and are known to be overexpressed in lung cancers. In this work, we examined if hnRNP A1 and A2 could regulate the alternative splicing of Tid1 to modulate tumorigenesis in NSCLC. We report that RNAi-mediated depletion of both hnRNP A1/A2 (but not single depletion of either) increased Tid1-L expression, inhibited cell proliferation and attenuated EGFR signaling. Analyses of the expression levels of hnRNP A1, hnRNP A2, EGFR and Tid1-L in NSCLC tissues revealed that hnRNP A1 and A2 are positively correlated with EGFR, but negatively correlated with Tid1-L. NSCLC patients with high-level expression of hnRNP A1, hnRNP A2 and EGFR combined with low-level expression of Tid1-L were associated with poor overall survival. Taken together, our results suggest that hnRNP A1 or A2 are both capable of facilitating the alternative splicing of exon 11 in the Tid1 pre-mRNA, thereby suppressing the expression of Tid1-L and allowing EGFR-related signaling to facilitate NSCLC tumorigenesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , ErbB Receptors/metabolism , HSP40 Heat-Shock Proteins/biosynthesis , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Lung Neoplasms/metabolism , Alternative Splicing , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic/physiology , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Protein Isoforms , Signal Transduction/physiology
15.
Oncol Lett ; 11(2): 921-924, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26893669

ABSTRACT

The present study reports the case of a 24-year-old female affected with primary Sjögren's syndrome (pSS), who presented with mucosa-associated lymphoid tissue (MALT) lymphoma of the submandibular gland. Reports of such cases, particularly in young patients, are very rare. The patient, who presented no oral or ocular symptoms prior to the development of the mass, underwent surgical ablation of the gland, and MALT lymphoma was diagnosed by histopathology. Since MALT lymphoma in the submandibular gland is rarely observed in otherwise healthy young females, a rheumatologist and an oncologist were consulted. Following a number of immunological tests, the results of the Schirmer's and Saxon tests were negative. However, the antinuclear antibody test revealed a speckled appearance, and there was also strong positivity for the serological markers of Sjögren's syndrome. Consequently, pSS was diagnosed, despite the fact that the patient did not fulfill all the diagnostic criteria for the disease. Therefore, MALT lymphoma in a single salivary gland should be used as a differential diagnosis for Sjögren's syndrome in young asymptomatic patients. Additionally, a multidisciplinary team is required for the treatment and management of these patients.

16.
Cancer Res ; 75(18): 3912-24, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26294212

ABSTRACT

Hypoxia is a hallmark of solid tumors that drives malignant progression by altering epigenetic controls. In breast tumors, aberrant DNA methylation is a prevalent epigenetic feature associated with increased risk of metastasis and poor prognosis. However, the mechanism by which hypoxia alters DNA methylation or other epigenetic controls that promote breast malignancy remains poorly understood. We discovered that hypoxia deregulates TET1 and TET3, the enzymes that catalyze conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby leading to breast tumor-initiating cell (BTIC) properties. TET1/3 and 5hmC levels were closely associated with tumor hypoxia, tumor malignancy, and poor prognosis in breast cancer patients. Mechanistic investigations showed that hypoxia leads to genome-wide changes in DNA hydroxymethylation associated with upregulation of TNFα expression and activation of its downstream p38-MAPK effector pathway. Coordinate functions of TET1 and TET3 were also required to activate TNFα-p38-MAPK signaling as a response to hypoxia. Our results reveal how signal transduction through the TET-TNFα-p38-MAPK signaling axis is required for the acquisition of BTIC characteristics and tumorigenicity in vitro and in vivo, with potential implications for how to eradicate BTIC as a therapeutic strategy.


Subject(s)
Breast Neoplasms/genetics , Cell Hypoxia/physiology , DNA Methylation , DNA-Binding Proteins/physiology , Dioxygenases/physiology , Neoplasm Proteins/physiology , Proto-Oncogene Proteins/physiology , Tumor Necrosis Factor-alpha/physiology , p38 Mitogen-Activated Protein Kinases/physiology , 5-Methylcytosine/analogs & derivatives , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Hypoxia/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Cytosine/analogs & derivatives , Cytosine/biosynthesis , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , Dioxygenases/biosynthesis , Dioxygenases/genetics , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mice, Nude , Mixed Function Oxygenases , Molecular Sequence Data , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/enzymology , Prognosis , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Retrospective Studies , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
17.
Oncotarget ; 6(27): 24002-16, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26090866

ABSTRACT

Tumor initiating cells (TICs) possessing cancer stemness were shown to be enriched after therapy, resulting in the relapse and metastasis of head and neck squamous cell carcinomas (HNC). An effective therapeutic approach suppressing the HNC-TICs would be a potential method to improve the treatments for HNC. We observed that the treatment of silibinin (SB) dose dependently down-regulated the ALDH1 activity, CD133 positivity, stemness signatures expression, self-renewal property, and chemoresistance in ALDH1+CD44+ HNC-TICs. Using miRNA-microarray and mechanistic studies, SB increased the expression of microRNA-494 (miR-494) and both Bmi1 and ADAM10 were identified as the novel targets of miR-494. Moreover, overexpression of miR-494 results in a reduction in cancer stemness. However, knockdown of miR-494 in CD44-ALDH1- non-HNC-TICs enhanced cancer stemness and oncogenicity, while co-knockdown of Bmi1 and ADAM10 effectively reversed these phenomena. Mice model showed that SB treatment by oral gavage to xenograft tumors reduced tumor growth and prolonged the survival time of tumor-bearing mice by activation of miR-494-inhibiting Bmi1/ADAM10 expression. Survival analysis indicated that a miR494highBmi1lowADAM10low phenotype predicted a favourable clinical outcome. We conclude that the inhibition of tumor aggressiveness in HNC-TICs by SB was mediated by up-regulation miR-494, suggesting that SB would be a valuable anti-cancer drug for treatment of HNC.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Polycomb Repressive Complex 1/metabolism , Silymarin/chemistry , AC133 Antigen , ADAM10 Protein , Aldehyde Dehydrogenase 1 Family , Animals , Antigens, CD/metabolism , Carcinoma, Squamous Cell/genetics , Cell Proliferation , Cell Survival , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Glycoproteins/metabolism , Head and Neck Neoplasms/genetics , Humans , Hyaluronan Receptors/metabolism , Incidence , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Transplantation , Neoplastic Stem Cells/cytology , Peptides/metabolism , Phenotype , Prognosis , Retinal Dehydrogenase/metabolism , Silybin
18.
Biomed Res Int ; 2015: 260312, 2015.
Article in English | MEDLINE | ID: mdl-25699264

ABSTRACT

Safety of either LigaSure or rubber band in closing inflamed appendiceal stump in acute appendicitis has been less investigated. In this study, cecal ligation followed by resecting inflamed cecum was performed to mimic appendectomy in a rat model of acute appendicitis. Rats were sacrificed immediately (Group A) and 7 days (Group B) after cecal resection, respectively. The cecal stumps were closed by silk ligature (S), 5 mm LigaSure (L), or rubber band (R). Seven days after cecal resection, the LigaSure (BL) and silk subgroups (BS) had significantly less intra-abdominal adhesion and better laparotomy wound healing than rubber band subgroup (BR). The initial bursting pressure at cecal stump was comparable among the three methods; along with tissue healing process, both BL and BS provided a higher bursting pressure than BR 7 days after appendectomy. BL subgroup had more abundant hydroxyproline deposition than BS and BR subgroup. Furthermore, serum TNF-α in BR group kept persistently increasing along with time after cecal resection. Thus, the finding that LigaSure but not rubber band is safe in sealing off the inflamed cecal stump in rat model of acute appendicitis suggests the possibility of applying LigaSure for appendectomy via single port procedure or natural orifice transluminal endoscopic surgery (NOTES).


Subject(s)
Appendicitis/surgery , Cecum/surgery , Inflammation/surgery , Ligation/methods , Acute Disease/therapy , Animals , Appendectomy/methods , Appendicitis/metabolism , Cecum/metabolism , Inflammation/metabolism , Male , Postoperative Complications/etiology , Rats , Rats, Sprague-Dawley , Rubber , Tumor Necrosis Factor-alpha/metabolism
19.
J Biomed Opt ; 18(12): 126005, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24343436

ABSTRACT

Recently, hyperspectral imaging (HSI) systems, which can provide 100 or more wavelengths of emission autofluorescence measures, have been used to delineate more complete spectral patterns associated with certain molecules relevant to cancerization. Such a spectral fingerprint may reliably correspond to a certain type of molecule and thus can be treated as a biomarker for the presence of that molecule. However, the outcomes of HSI systems can be a complex mixture of characteristic spectra of a variety of molecules as well as optical interferences due to reflection, scattering, and refraction. As a result, the mixed nature of raw HSI data might obscure the extraction of consistent spectral fingerprints. Here we present the extraction of the characteristic spectra associated with keratinized tissues from the HSI data of tissue sections from 30 oral cancer patients (31 tissue samples in total), excited at two different wavelength ranges (330 to 385 and 470 to 490 nm), using independent and principal component analysis (ICA and PCA) methods. The results showed that for both excitation wavelength ranges, ICA was able to resolve much more reliable spectral fingerprints associated with the keratinized tissues for all the oral cancer tissue sections with significantly higher mean correlation coefficients as compared to PCA (p<0.001).


Subject(s)
Image Processing, Computer-Assisted/methods , Mouth Neoplasms/chemistry , Optical Imaging/methods , Aged , Humans , Male , Middle Aged , Principal Component Analysis
20.
Cancer Res ; 73(13): 4009-19, 2013 07 01.
Article in English | MEDLINE | ID: mdl-23698466

ABSTRACT

Tid1 (DNAJA3), a DnaJ cochaperone, may promote degradation of oncogenic kinases. Tid1 has 2 isoforms, Tid1-L and Tid1-S, that may function differently. In this study, we investigated the role of the Tid1 isoforms in regulating EGF receptor (EGFR) signaling and lung cancer progression. We found that both Tid1-L and Tid1-S expressions were reduced in patients with non-small cell lung cancer compared with normal counterparts. Tid1-L expression correlated inversely with EGFR expression. Low Tid1-L/high EGFR expression predicted poor overall survival in patients with lung adenocarcinoma. Tid1-L overexpression in lung cancer cells attenuated EGFR signaling and inhibited cell proliferation, colony formation, and tumor growth in subcutaneous and orthotropic xenograft models. Conversely, depletion of Tid1 restored EGFR signaling and increased cell proliferation and colony formation. Tid1-L, but not Tid1-S, interacted with EGFR/HSP70/HSP90 through the DnaJ domain, counteracting the EGFR regulatory function of HSP90 by causing EGFR ubiquitinylation and proteasomal degradation. Tid1-L inhibited EGFR signaling even more than the HSP90 inhibitor 17-allylamino-demethoxy geldanamycin. We concluded that Tid1-L acted as a tumor suppressor by inhibiting EGFR signaling through interaction with EGFR/HSP70/HSP90 and enhancing EGFR ubiquitinylation and degradation.


Subject(s)
Adenocarcinoma/metabolism , ErbB Receptors/metabolism , HSP40 Heat-Shock Proteins/physiology , Lung Neoplasms/metabolism , Proteolysis , Ubiquitination , Adenocarcinoma/mortality , Adenocarcinoma of Lung , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Epidermal Growth Factor/physiology , Female , Gene Expression , HSP40 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Multivariate Analysis , Neoplasm Transplantation , Polyubiquitin/metabolism , Protein Isoforms/chemistry , Protein Isoforms/physiology , Protein Structure, Tertiary , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...