Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35336738

ABSTRACT

Endophenazine A is a terpenoid phenazine with phenazine-1-carboxylic acid (PCA), and dimethylallyl diphosphate (DMAPP) derived from the 2-methyl-D-erythritol-4-phosphate (MEP) pathway as the precursor, which shows good antimicrobial activity against several Gram-positive bacteria and fungi. However, the highest yield of endophenazine A was about 20 mg/L in Streptomyces, limiting its large-scale industrial development. Pseudomonas chlororaphis P3, possessing an efficient PCA synthesis and MEP pathways, is a suitable chassis to synthesize endophenazine A. Herein, we designed an artificial biosynthetic pathway for the synthesis of endophenazine A in P. chlororaphis P3. Primarily, the prenyltransferase PpzP from Streptomyces anulatus 9663 was introduced into P. chlororaphis P3 and successfully synthesized endophenazine A. Another phenazine compound, endophenazine A1, was discovered and identified as a leakage of the intermediate 4-hydroxy-3-methyl-2-butene pyrophosphate (HMBPP). Finally, the yield of endophenazine A reached 279.43 mg/L, and the yield of endophenazine A1 reached 189.2 mg/L by metabolic engineering and medium optimization. In conclusion, we successfully synthesized endophenazine A and endophenazine A1 in P. chlororaphis P3 for the first time and achieved the highest titer, which provides a reference for the heterologous synthesis of terpenoid phenazines.

2.
Mol Microbiol ; 116(2): 690-706, 2021 08.
Article in English | MEDLINE | ID: mdl-34097792

ABSTRACT

Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.


Subject(s)
Bacterial Proteins/metabolism , Phenazines/metabolism , Protease La/metabolism , Pseudomonas chlororaphis/metabolism , Antifungal Agents/metabolism , Down-Regulation , Feedback, Physiological , Gene Deletion , Gene Expression Regulation, Bacterial/genetics , Protease La/genetics , Quorum Sensing/physiology
3.
Mol Plant Pathol ; 22(8): 921-938, 2021 08.
Article in English | MEDLINE | ID: mdl-33963656

ABSTRACT

The biocontrol rhizobacterium Pseudomonas protegens H78 can produce a large array of antimicrobial secondary metabolites, including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). Our preliminary study showed that the biosynthesis of antibiotics including Plt is activated by the RNA chaperone Hfq in P. protegens H78. This prompted us to explore the global regulatory mechanism of Hfq, as well as the catabolite repression control (Crc) protein in H78. The antimicrobial capacity of H78 was positively controlled by Hfq while slightly down-regulated by knockout of crc. Similarly, cell growth of H78 was significantly impaired by deletion of hfq and slightly inhibited by knockout of crc. Transcriptomic profiling revealed that hfq mutation resulted in significant down-regulation of 688 genes and up-regulation of 683 genes. However, only 113 genes were significantly down-regulated and 105 genes up-regulated by the crc mutation in H78. Hfq positively regulated the expression of gene clusters involved in secondary metabolism (plt, prn, phl, hcn, and pvd), the type VI secretion system, and aromatic compound degradation. However, Crc only positively regulated the biosynthesis of Plt but not other antibiotics. Hfq also regulated expression of genes involved in oxidative phosphorylation and flagellar biogenesis. In addition, Hfq and Crc activated transcription of crcY/Z sRNAs by feedback. In summary, Hfq processes far more extensive and intensive regulatory capacity than Crc and shows small cross-regulation with Crc in H78. This study lays the foundation for clarifying the Hfq and/or Crc-dependent global regulatory network and improving antibiotic production by genetic engineering in P. protegens.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas/genetics
4.
J Agric Food Chem ; 68(2): 561-566, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31840510

ABSTRACT

2-Hydroxyphenazine (2-OH-PHZ) is an effective biocontrol antibiotic secreted by Pseudomonas chlororaphis GP72AN and is transformed from phenazine-1-carboxylic acid (PCA). PCA is the main component of the recently registered biopesticide "Shenqinmycin". Previous research showed that 2-OH-PHZ was better in controlling wheat take-all disease than PCA; however, 2-OH-PHZ production was low under natural conditions. Herein, we confirmed that PCA induced reactive oxygen species in its host P. chlororaphis GP72AN and that the addition of DTT improved PCA production by 1.8-fold, whereas the supplementation of K3[Fe(CN)6] and H2O2 increased the conversion rate of PCA to 2-OH-PHZ. Finally, a two-stage fermentation strategy combining the addition of DTT at 12 h and H2O2 at 24 h enhanced 2-OH-PHZ production. Taken together, the two-stage fermentation strategy was designed to enhance 2-OH-PHZ production for the first time, and it provided a valuable reference for the fermentation of other antibiotics.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Glycerol/metabolism , Industrial Microbiology/methods , Pseudomonas chlororaphis/metabolism , Bacterial Proteins/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Hydrogen Peroxide/metabolism , Phenazines/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...