Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35891479

ABSTRACT

Human platelet lysate (hPL) contains abundant growth factors for inducing human cell proliferation and may be a suitable alternative to fetal bovine serum (FBS) as a culture medium supplement. However, the application of hPL in virological research remains blank. Parechovirus type-A3 (PeV-A3) belongs to Picornaviridae, which causes meningoencephalitis in infants and young children. To understand the suitability of hPL-cultured cells for PeV-A3 infection, the infection of PeV-A3 in both FBS- and hPL-cultured glioblastoma (GBM) cells were compared. Results showed reduced PeV-A3 infection in hPL-cultured cells compared with FBS-maintained cells. Mechanistic analysis revealed hPL stimulating type I interferon (IFN) antiviral pathway, through which phospho-signal transducer and activator of transcription 1 (STAT1), STAT2, interferon regulatory factor 3 (IRF3) were activated and antiviral genes, such as IFN-α, IFN-ß, and Myxovirus resistance protein 1 (MxA), were also detected. In addition, an enhanced PeV-A3 replication was detected in the hPL-cultured GBM cells treated with STAT-1 inhibitor (fludarabine) and STAT1 shRNA. These results in vitro suggested an unexpected effect of hPL-activated type I IFN pathway response to restrict virus replication and that hPL may be a potential antiviral bioreagent.


Subject(s)
Blood Platelets , Parechovirus , Blood Platelets/virology , Cell Line, Tumor , Cell Proliferation , Culture Media , Humans , Intercellular Signaling Peptides and Proteins , Interferon Type I/immunology
2.
Front Immunol ; 12: 753683, 2021.
Article in English | MEDLINE | ID: mdl-34899705

ABSTRACT

Human parechovirus type 3 (PeV-A3) infection has been recognized as an emerging etiologic factor causing severe nerve disease or sepsis in infants and young children. But the neuropathogenic mechanisms of PeV-A3 remain unknown. To understand the pathogenesis of PeV-A3 infection in the neuronal system, PeV-A3-mediated cytopathic effects were analyzed in human glioblastoma cells and neuroblastoma cells. PeV-A3 induced interferons and inflammatory cytokine expression in these neuronal cells. The pronounced cytopathic effects accompanied with activation of death signaling pathways of apoptosis, autophagy, and pyroptosis were detected. A new experimental disease model of parechovirus encephalitis was established. In the disease model, intracranial inoculation with PeV-A3 in C57BL/6 neonatal mice showed body weight loss, hindlimb paralysis, and approximately 20% mortality. PeV-A3 infection in the hippocampus and cortex regions of the neonatal mouse brain was revealed. Mechanistic assay supported the in vitro results, indicating detection of PeV-A3 replication, inflammatory cytokine expression, and death signaling transduction in mouse brain tissues. These in vitro and in vivo studies revealed that the activation of death signaling and inflammation responses is involved in PeV-A3-mediated neurological disorders. The present results might account for some of the PeV-A3-associated clinical manifestations.


Subject(s)
Cytopathogenic Effect, Viral , Disease Models, Animal , Encephalitis, Viral/metabolism , Parechovirus/pathogenicity , Picornaviridae Infections/metabolism , Animals , Animals, Newborn , Apoptosis , Autophagy , Cell Line, Tumor , Cerebral Cortex/virology , Chlorocebus aethiops , Cytokines/biosynthesis , Cytokines/genetics , Encephalitis, Viral/pathology , Encephalitis, Viral/virology , Glioblastoma/pathology , Hippocampus/virology , Humans , Inflammation , Interferon Type I/biosynthesis , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/biosynthesis , Interferons/genetics , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Neuroblastoma/pathology , Parechovirus/drug effects , Parechovirus/physiology , Picornaviridae Infections/pathology , Picornaviridae Infections/virology , Pyroptosis , Vero Cells , Virus Replication/drug effects , Interferon Lambda
3.
Microorganisms ; 8(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207765

ABSTRACT

Parechovirus A (PeV-A; human parechovirus) causes mild infections and severe diseases such as neonatal sepsis, encephalitis, and cardiomyopathy in young children. Among the 19 types of PeV-A, PeV-A1 is the most common type of infection. We have previously established an immunofluorescence assay for detecting multiple PeV-A types with a polyclonal antibody against the conserved epitope of VP0. Although the polyclonal antibody is useful for PeV-A diagnosis, it could not distinguish the PeV-A genotypes. Thus, the development of a specific monoclonal antibody for identifying the common infection of PeV-A1 would be beneficial in clinical diagnosis practice. In this study, the recombinant full-length PeV-A1 VP0 protein was used in mouse immunization; a total 10 hybridomas were established. After evaluation by immunoblotting and fluorescence assays, six hybridoma clones with monoclonal antibody (mAb) production were confirmed. These mAbs, which specifically recognize viral protein PeV-A1 VP0 without cross-reactivity to PeV-A3, will prove useful in research and PeV-A1 diagnosis.

4.
Viruses ; 10(12)2018 12 12.
Article in English | MEDLINE | ID: mdl-30545147

ABSTRACT

Parechovirus A (Human parechovirus, HPeV) causes symptoms ranging from severe neonatal infection to mild gastrointestinal and respiratory disease. Use of molecular approaches with RT-PCR and genotyping has improved the detection rate of HPeV. Conventional methods, such as viral culture and immunofluorescence assay, together with molecular methods facilitate comprehensive viral diagnosis. To establish the HPeV immunofluorescence assay, an antibody against HPeV capsid protein VP0 was generated by using antigenic epitope prediction data. The specificity of the anti-HPeV VP0 antibody was demonstrated on immunofluorescence assay, showing that this antibody was specific for HPeV but not enteroviruses. A total of 74 HPeV isolates, 7 non⁻polio-enteroviruses and 12 HPeV negative cell culture supernatant were used for evaluating the efficiency of the anti-HPeV VP0 antibody. The sensitivity of HPeV detection by the anti-HPeV VP0 antibody was consistent with 5'untranslated region (UTR) RT-PCR analysis. This study established comprehensive methods for HPeV detection that include viral culture and observation of cytopathic effect, immunofluorescence assay, RT-PCR and genotyping. The methods were incorporated into our routine clinical practice for viral diagnosis. In conclusion, this study established a protocol for enterovirus and HPeV virus identification that combines conventional and molecular methods and would be beneficial for HPeV diagnosis.


Subject(s)
Parechovirus/isolation & purification , Picornaviridae Infections/diagnosis , Antibodies, Viral/immunology , Antibody Specificity , Capsid Proteins/immunology , Clinical Laboratory Techniques , Fluorescent Antibody Technique, Direct , Genotyping Techniques , Humans , Parechovirus/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...