Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Graph Model ; 118: 108358, 2023 01.
Article in English | MEDLINE | ID: mdl-36327685

ABSTRACT

Hydrogen bonding is one of the most important inter-molecular interactions in the field of biochemistry and medicinal chemistry. Such non-covalent interactions play a vital role in self-assembly phenomena, chemical structures, material properties and enzymatic catalysis. Herein, we present hydrogen bonding phenomenon in alcohols-dinitrobenzene (DNB) radical anion/dianion systems using electrochemical and computational approaches. First, 1,3-DNB radical anion and dianion were generated through electrochemical method and then hydrogen bonding interactions with aliphatic alcohols in DMSO are studied through cyclic voltammetry (CV). CV results show that the cathodic peak potential of 1,3-Dinitrobenzene in Dimethyl sulfoxide is shifted catholically upon addition of alcohols which represent hydrogen bonding phenomenon. Theoretical investigations are performed to gain deep insight on hydrogen bonding interaction strength in DNB-alcohol systems. H-bonding interaction of all isomers of DNB (1,2-, 1,3-, 1,4-), its corresponding radical anion, and dianion with aliphatic alcohols is studied using density functional calculations. The strength of H-bonding is evaluated both qualitatively and quantitatively using interaction energies, vibrational and electronic spectroscopic analysis. Understanding of these interactions will be helpful in gaining insight into biological systems where these interactions play significant role.


Subject(s)
Alcohols , Dinitrobenzenes , Hydrogen Bonding , Anions , Dimethyl Sulfoxide
SELECTION OF CITATIONS
SEARCH DETAIL
...