Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(14): 3582-3599, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38904161

ABSTRACT

Nanostructured 7-9-residue cyclic and unstructured lipopeptide-based facial detergents have been engineered to stabilize the model integral membrane protein, bacteriorhodopsin. Formation of a cylindrical-type micelle assembly induced by facial amphipathic lipopeptides resembles a biological membrane more effectively than conventional micelles. The hydrophobic face of this cylindrical-type micelle provides extended stability to the membrane protein and the hydrophilic surface interacts with an aqueous environment. In our present study, we have demonstrated experimentally and computationally that lipopeptide-based facial detergents having an unstructured or ß-turn conformation can stabilize membrane proteins. However, constrained peptide detergents can provide enhanced stability to bacteriorhodopsin. In this study, we have computationally examined the structural stability of bacteriorhodopsin in the presence of helical, beta-strand, and cyclic unstructured peptide detergents, and conventional detergent-like peptides. Our study demonstrates that optimal membranomimetics (detergents) for stabilizing a specific membrane protein can be screened based on the following criteria: (i) hydrodynamic radii of the self-assembled peptide detergents, (ii) stability assay of detergent-encased membrane proteins, (iii) percentage covered area of detergent-encased membrane proteins obtained computationally and (iv) protein-detergent interaction energy.


Subject(s)
Bacteriorhodopsins , Lipopeptides , Nanostructures , Protein Stability , Bacteriorhodopsins/chemistry , Nanostructures/chemistry , Lipopeptides/chemistry , Detergents/chemistry , Micelles , Hydrophobic and Hydrophilic Interactions
2.
ACS Appl Bio Mater ; 6(2): 458-472, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36651932

ABSTRACT

Small interfering RNA (siRNA) has become the cornerstone against undruggable targets and for managing metastatic breast cancer. However, an effective gene silencing approach is faced with a major challenge due to the delivery problem. In our present study, we have demonstrated efficient siRNA delivery, superior gene silencing, and inhibition of metastasis in triple-negative breast cancer cells (MDA-MB-231) using rod-shaped (aspect ratio: 4) multivalent peptide-functionalized gold nanoparticles and compared them to monovalent free peptide doses. Multivalency is a new concept in biology, and tuning the physical parameters of multivalent nanoparticles can enhance gene silencing and antitumor efficacy. We explored the effect of the multivalency of shape- and size-dependent peptide-functionalized gold nanoparticles in siRNA delivery. Our study demonstrates that peptide functionalization leads to reduced toxicity of the nanoparticles. Such designed peptide-functionalized nanorods also demonstrate antimetastatic efficacy in Notch1-silenced cells by preventing EMT progression in vitro. We have shown siRNA delivery in the hard-to-transfect primary cell line HUVEC and also demonstrated that the Notch1-silenced MDA-MB-231 cell line has failed to form nanobridge-mediated foci with the HUVEC in the co-culture of HUVEC and MDA-MB-231, which promote metastasis. This antimetastatic effect is further checked in a xenotransplant in vivo zebrafish model. In vivo studies also suggest that our designed nanoparticles mediated inhibition of micrometastasis due to silencing of the Notch1 gene. The outcome of our study highlights that the structure-activity relationship of multifunctional nanoparticles can be harnessed to modulate their biological activity.


Subject(s)
Metal Nanoparticles , Nanotubes , Neoplasms , Animals , Cell Line, Tumor , Gene Silencing , Gold , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Zebrafish/genetics , Humans , Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Neoplasm Metastasis
3.
Chem Asian J ; 16(24): 4018-4036, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34643055

ABSTRACT

Developing non-immunogenic therapeutic biomolecules for facilitating blood clotting followed by wound healing via therapeutic angiogenesis, still remains a formidable challenge. Excessive blood loss of accident victims and battalions cause a huge number of deaths worldwide. Patients with inherited bleeding disorders face acute complications during injury and post-surgery. Biologically-inspired peptide-based hemostat can act as a potential therapeutic for handling coagulopathy. Additionally, non-healing wounds for patients having ischemic diseases can cause severe clinical complications. Advancement in stabilized growth-factor-based proangiogenic therapy may offer effective possibilities for the treatment of ischemic pathology. This review will discuss nature-inspired biocompatible stabilized peptide- and protein-based molecular medicines to serve unmet medical challenges for handling traumatic coagulopathy and impaired wound healing.


Subject(s)
Intercellular Signaling Peptides and Proteins/pharmacology , Peptides/pharmacology , Proteins/pharmacology , Wound Healing/drug effects , Animals , Blood Coagulation/drug effects , Blood Coagulation/physiology , Drug Delivery Systems , Hemostatics/pharmacology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Neovascularization, Physiologic/drug effects , Peptides/genetics , Protein Engineering , Proteins/genetics , Wound Healing/physiology
4.
ACS Biomater Sci Eng ; 6(11): 6378-6393, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33449650

ABSTRACT

Engineering bioinspired peptide-based molecular medicine is an emerging paradigm for the management of traumatic coagulopathies and inherent bleeding disorder. A hemostat-based strategy in managing uncontrolled bleeding is limited due to the lack of adequate efficacy and clinical noncompliance. In this study, we report an engineered adhesive peptide-based hybrid regenerative medicine, sealant 5, which is designed integrating the structural and functional features of fibrin and mussel foot-pad protein. AFM studies have revealed that sealant 5 (55.8 ± 6.8 nN adhesive force) has higher adhesive force than fibrin (46.4 ± 7.3 nN adhesive force). SEM data confirms that sealant 5 retains its network-like morphology both at 37 and 60 °C, inferring its thermal stability. Both sealant 5 and fibrin exhibit biodegradability in the presence of trypsin, and sealant 5 also showed biocompatibility in the presence of fibroblast cells. Engineered sealant 5 efficiently promotes hemostasis with enhanced adhesiveness and less blood-loss than fibrin. In vivo data suggests that in heparinized conditions, sealant 5 ceases bleeding at 212.3 ± 15.1 s, whereas fibrin halts bleeding at 294.3 ± 21.4 s and blood-loss is ∼4-fold less in sealant 5 than in fibrin. In a heparinized system, sealant 5 facilitates faster blood-clotting than fibrin (∼82 s faster) and RADA-16, a reported peptide-based sealant (∼113 s faster). Additionally, in the case of sealant 5, the process of clotting mimicry-like fibrin is independent of the body's own coagulation system. Sealant 5 efficiently halts bleeding for both external and internal wounds, even for a heparinized system overcoming the bacterial infection. ELISA data and PMBC cell proliferation data support the non-immunogenic feature of sealant 5. Though fibrin and sealant 5 have exhibited comparable efficacy in suture-free wound closure, in vivo H&E staining images have revealed infiltration of very few immune cells as well as the presence of abundant collagen formation in the case of sealant 5-treated wound. Such nature-inspired non-immunogenic sealants offer exciting possibilities for the treatment of uncontrolled bleeding vis-à-vis wound closure.


Subject(s)
Fibrin Tissue Adhesive , Sutures , Blood Coagulation , Hemorrhage/prevention & control , Hemostasis, Surgical , Humans
5.
ACS Appl Mater Interfaces ; 11(5): 4719-4736, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30628773

ABSTRACT

Cytosolic delivery of functional siRNA remains the major challenge to develop siRNA-based therapeutics. Designing clinically safe and effective siRNA transporter to deliver functional siRNA across the plasma and endosomal membrane remains a key hurdle. With the aim of improving endosomal release, we have designed cyclic and linear peptide-based transporters having an Arg-DHis-Arg template. Computational studies show that the Arg-DHis-Arg template is also stabilized by the Arg-His side-chain hydrogen bonding interaction at physiological pH, which dissociates at lower pH. The overall atomistic interactions were examined by molecular dynamics simulations, which indicate that the extent of peptide_siRNA assembly formation depends greatly on physicochemical properties of the peptides. Our designed peptides having the Arg-DHis-Arg template and two lipidic moieties facilitate high yield of intracellular delivery of siRNA. Additionally, unsaturated lipid, linoleic acid moieties were introduced to promote fusogenicity and facilitate endosomal release and cytosolic delivery. Interestingly, such protease-resistant peptides provide serum stability to siRNA and exhibit high efficacy of erk1 and erk2 gene silencing in the triple negative breast cancer (TNBC) cell line. The peptide having two linoleyl moieties demonstrated comparable efficacy with commercial transfection reagent HiPerFect, as evidenced by the erk1 and erk2 gene knockdown experiment. Additionally, our study shows that ERK1/2 silencing siRNA and doxorubicin-loaded gramicidin-mediated combination therapy is more effective than siRNA-mediated gene silencing-based monotherapy for TNBC treatment.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cell-Penetrating Peptides/pharmacokinetics , Drug Delivery Systems/methods , Lipopeptides/pharmacokinetics , RNA, Small Interfering/pharmacokinetics , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Humans , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Lipopeptides/pharmacology , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects
6.
Sci Rep ; 7(1): 6509, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28747673

ABSTRACT

Designing biologically inspired nanoscale molecular assembly with desired functionality is a challenging endeavour. Here we report the designing of fibrin-inspired nanostructured peptide based sealants which facilitate remarkably fast entrapping of blood corpuscles (~28 seconds) in contrast to fibrin (~56 seconds). Our engineered sealants are stabilized by lysine-aspartate ionic interactions and also by Nε(γ-glutamyl) lysine isopeptide bond mediated covalent interaction. Each sealant is formed by two peptides having complementary charges to promote lysine-aspartate ionic interactions and designed isopeptide bond mediated interactions. Computational analysis reveals the isopeptide bond mediated energetically favourable peptide assemblies in sealants 1-3. Our designed sealants 2 and 3 mimic fibrin-mediated clot formation mechanism in presence of transglutaminase enzyme and blood corpuscles. These fibrin-inspired peptides assemble to form sealants having superior hemostatic activities than fibrin. Designed sealants feature mechanical properties, biocompatibility, biodegradability and high adhesive strength. Such nature-inspired robust sealants might be potentially translated into clinics for facilitating efficient blood clotting to handle traumatic coagulopathy and impaired blood clotting.


Subject(s)
Blood Cells/metabolism , Blood Coagulation , Hemostatics/chemistry , Hemostatics/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Protein Binding , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...