Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304018, 2024.
Article in English | MEDLINE | ID: mdl-38905213

ABSTRACT

Fractional order algorithms demonstrate superior efficacy in signal processing while retaining the same level of implementation simplicity as traditional algorithms. The self-adjusting dual-stage fractional order least mean square algorithm, denoted as LFLMS, is developed to expedite convergence, improve precision, and incurring only a slight increase in computational complexity. The initial segment employs the least mean square (LMS), succeeded by the fractional LMS (FLMS) approach in the subsequent stage. The latter multiplies the LMS output, with a replica of the steering vector (R) of the intended signal. Mathematical convergence analysis and the mathematical derivation of the proposed approach are provided. Its weight adjustment integrates the conventional integer ordered gradient with a fractional-ordered. Its effectiveness is gauged through the minimization of mean square error (MSE), and thorough comparisons with alternative methods are conducted across various parameters in simulations. Simulation results underscore the superior performance of LFLMS. Notably, the convergence rate of LFLMS surpasses that of LMS by 59%, accompanied by a 49% improvement in MSE relative to LMS. So it is concluded that the LFLMS approach is a suitable choice for next generation wireless networks, including Internet of Things, 6G, radars and satellite communication.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Least-Squares Analysis , Computer Simulation , Models, Theoretical
2.
PLoS One ; 18(9): e0286362, 2023.
Article in English | MEDLINE | ID: mdl-37733720

ABSTRACT

Stock market forecasting is one of the most challenging problems in today's financial markets. According to the efficient market hypothesis, it is almost impossible to predict the stock market with 100% accuracy. However, Machine Learning (ML) methods can improve stock market predictions to some extent. In this paper, a novel strategy is proposed to improve the prediction efficiency of ML models for financial markets. Nine ML models are used to predict the direction of the stock market. First, these models are trained and validated using the traditional methodology on a historic data captured over a 1-day time frame. Then, the models are trained using the proposed methodology. Following the traditional methodology, Logistic Regression achieved the highest accuracy of 85.51% followed by XG Boost and Random Forest. With the proposed strategy, the Random Forest model achieved the highest accuracy of 91.27% followed by XG Boost, ADA Boost and ANN. In the later part of the paper, it is shown that only classification report is not sufficient to validate the performance of ML model for stock market prediction. A simulation model of the financial market is used in order to evaluate the risk, maximum draw down and returns associate with each ML model. The overall results demonstrated that the proposed strategy not only improves the stock market returns but also reduces the risks associated with each ML model.


Subject(s)
Investments , Machine Learning , Humans , Computer Simulation , Random Forest , Research Personnel
3.
PeerJ Comput Sci ; 9: e1183, 2023.
Article in English | MEDLINE | ID: mdl-37346560

ABSTRACT

Biometrics is the measurement of an individual's distinctive physical and behavioral characteristics. In comparison to traditional token-based or knowledge-based forms of identification, biometrics such as fingerprints, are more reliable. Fingerprint images recorded digitally can be affected by scanner noise, incorrect finger pressure, condition of the finger's skin (wet, dry, or abraded), or physical material it is scanned from. Image enhancement algorithms applied to fingerprint images remove noise elements while retaining relevant structures (ridges, valleys) and help in the detection of fingerprint features (minutiae). Amongst the most common image enhancement filters is the Gabor filter, however, given their restricted maximum bandwidth as well as limited range of spectral information, it falls short. We put forward a novel method of fingerprint image enhancement using a combination of a diffusion-coherence filter and a 2D log-Gabor filter. The log-Gabor overcomes the limitations of the Gabor filter while Coherence Diffusion mitigates noise elements within fingerprint images. Implementation is done on the FVC image database and assessed via visual comparison with coherence diffusion used disjointedly and with the Gabor filter.

SELECTION OF CITATIONS
SEARCH DETAIL
...