Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
ACS Omega ; 6(37): 23742-23749, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34568654

ABSTRACT

The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.

2.
Sensors (Basel) ; 21(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919962

ABSTRACT

The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Animals , Biofilms , Cattle , Escherichia coli , Female , Humans , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins
3.
Vet Res ; 46: 84, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26198736

ABSTRACT

Erysipelothrix rhusiopathiae infections re-emerged as a matter of great concern particularly in the poultry industry. In contrast to porcine isolates, molecular epidemiological traits of avian E. rhusiopathiae isolates are less well known. Thus, we aimed to (i) develop a multilocus sequence typing (MLST) scheme for E. rhusiopathiae, (ii) study the congruence of strain grouping based on pulsed-field gel electrophoresis (PFGE) and MLST, (iii) determine the diversity of the dominant immunogenic protein SpaA, and (iv) examine the distribution of genes putatively linked with virulence among field isolates from poultry (120), swine (24) and other hosts (21), including humans (3). Using seven housekeeping genes for MLST analysis we determined 72 sequence types (STs) among 165 isolates. This indicated an overall high diversity, though 34.5% of all isolates belonged to a single predominant ST-complex, STC9, which grouped strains from birds and mammals, including humans, together. PFGE revealed 58 different clusters and congruence with the sequence-based MLST-method was not common. Based on polymorphisms in the N-terminal hyper-variable region of SpaA the isolates were classified into five groups, which followed the phylogenetic background of the strains. More than 90% of the isolates harboured all 16 putative virulence genes tested and only intI, encoding an internalin-like protein, showed infrequent distribution. MLST data determined E. rhusiopathiae as weakly clonal species with limited host specificity. A common evolutionary origin of isolates as well as shared SpaA variants and virulence genotypes obtained from avian and mammalian hosts indicates common reservoirs, pathogenic pathways and immunogenic properties of the pathogen.


Subject(s)
Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Erysipelothrix Infections/epidemiology , Erysipelothrix/genetics , Erysipelothrix/pathogenicity , Poultry Diseases/epidemiology , Swine Diseases/epidemiology , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Electrophoresis, Gel, Pulsed-Field/veterinary , Erysipelothrix/metabolism , Erysipelothrix Infections/microbiology , Humans , Molecular Sequence Data , Multilocus Sequence Typing , Phylogeny , Poultry , Poultry Diseases/microbiology , Sequence Analysis, Protein , Swine , Swine Diseases/microbiology , Virulence
4.
J Biosci Bioeng ; 120(3): 275-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25782617

ABSTRACT

From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required.


Subject(s)
Atmospheric Pressure , Cold Temperature , Food Microbiology , Food Safety/methods , Plasma Gases , Shiga-Toxigenic Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli O157/growth & development , Humans , Microbial Viability , Shiga Toxin/biosynthesis , Shiga-Toxigenic Escherichia coli/growth & development , Zea mays/microbiology
5.
Food Microbiol ; 46: 184-194, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25475283

ABSTRACT

Enterohemorrhagic Escherichia coli strains cause each year thousands of illnesses, which are sometimes accompanied by the hemolytic uremic syndrome, like in the 2011 outbreak in Germany. For preservation thermal pasteurization is commonly used, which can cause unwanted quality changes. To prevent this high pressure treatment is a potential alternative. Within this study, the 2011 outbreak strain O104:H4, an O157:H7 and a non-pathogenic strain (DSM1116) were tested. The cells were treated in buffer (pH 7 and pH 5) and carrot juice (pH 5.1) in a pressure temperature range of 0.1-500 MPa and 20-70 °C. Flow cytometry was used to investigate the pressure impact on cell structures of the strain DSM1116. Both pathogenic strains had a much higher resistance in buffer and carrot juice than the non-pathogenic surrogate. Further, strains cultivated and treated at a lower pH-value showed higher pressure stability, presumably due to variations in the membrane composition. This was confirmed for the strain DSM1116 by flow cytometry. Cells cultivated and treated at pH 5 had a stronger ability to retain their membrane potential but showed higher rates of membrane permeabilization at pressures <200 MPa compared to cells cultivated and treated at pH 7. These cells had the lowest membrane permeabilization rate at around 125 MPa, possibly denoting that variations in the fatty acid composition and membrane fluidity contribute to this stabilization phenomenon.


Subject(s)
Beverages/microbiology , Escherichia coli Infections/microbiology , Shiga-Toxigenic Escherichia coli/growth & development , Beverages/analysis , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli O157/chemistry , Escherichia coli O157/growth & development , Germany/epidemiology , Humans , Hydrogen-Ion Concentration , Microbial Viability , Pressure , Shiga-Toxigenic Escherichia coli/chemistry
6.
Int J Med Microbiol ; 304(7): 835-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25037925

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) strains of certain genetic lineages are frequently implicated in a wide range of diseases in humans and birds. ExPEC strains belonging to the phylogenetic lineage/sequence type complex 95 (STC95) are one such prominent lineage that is commonly isolated from extraintestinal infections such as systemic disease in poultry and urinary tract infections (UTIs), neonatal meningitis and sepsis in humans. Several epidemiological studies have indicated that ST95 strains obtained from such infections may share similar virulence genes and other genomic features. However, data on their ability to establish infections in vivo as deduced from the manifestation of similar virulence phenotypes remain elusive. In the present study, 116 STC95 ExPEC isolates comprising 55 human and 61 avian strains, possessing similar virulence gene patterns, were characterized in vitro using adhesion, invasion, biofilm formation and serum bactericidal assays. Overall, STC95 strains from both groups, namely human and birds, were equally capable of adhering to and invading the two mammalian kidney cell lines. Similarly, these strains were able to form strong biofilms in M63 medium. Furthermore, they were equally resistant to the bactericidal activity of human and avian serum. Our cumulative data reinforce the understanding that ST95 strains from poultry present a potential zoonotic risk and therefore need a One Health strategy for a successfull intervention.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/classification , Escherichia coli/genetics , Virulence Factors/genetics , Animals , Bacterial Adhesion , Biofilms/growth & development , Birds , Blood Bactericidal Activity , Cell Line , Dogs , Endocytosis , Epithelial Cells/microbiology , Escherichia coli/isolation & purification , Escherichia coli/physiology , Genotype , Humans
7.
Gut ; 63(12): 1893-901, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24534723

ABSTRACT

OBJECTIVE: α-Haemolysin (HlyA) influences host cell ionic homeostasis and causes concentration-dependent cell lysis. As a consequence, HlyA-producing Escherichia coli is capable of inducing 'focal leaks' in colon epithelia, through which bacteria and antigens translocate. This study addressed the role of HlyA as a virulence factor in the pathogenesis of colitis according to the 'leaky gut' concept. DESIGN: To study the action of HlyA in the colon, we performed oral administration of HlyA-expressing E coli-536 and its isogenic α-haemolysin-deficient mutant (HDM) in three mouse models: wild type, interleukin-10 knockout mice (IL-10(-/-)) and monoassociated mice. Electrophysiological properties of the colonised colon were characterised in Ussing experiments. Inflammation scores were evaluated and focal leaks in the colon were assessed by confocal laser-scanning microscopy. HlyA quantity in human colon biopsies was measured by quantitative PCR. RESULTS: All three experimental mouse models infected with HlyA-producing E coli-536 showed an increase in focal leak area compared with HDM. This was associated with a decrease in transepithelial electrical resistance and an increase in macromolecule uptake. As a consequence, inflammatory activity index was increased to a higher degree in inflammation-prone mice. Mucosal samples from human colon were E coli HlyA-positive in 19 of 22 patients with ulcerative colitis, 9 of 9 patients with Crohn's disease and 9 of 12 healthy controls. Moreover, focal leaks were found together with 10-fold increased levels of HlyA in active ulcerative colitis. CONCLUSIONS: E coli HlyA impairs intestinal barrier function via focal leak induction in the epithelium, thereby intensifying antigen uptake and triggering intestinal inflammation in vulnerable mouse models. Therefore, HlyA-expressing E coli strains should be considered as potential cofactors in the pathogenesis of intestinal inflammation.


Subject(s)
Antigens/metabolism , Colitis, Ulcerative , Crohn Disease , Enterocytes , Escherichia coli Proteins/metabolism , Escherichia coli , Hemolysin Proteins/metabolism , Animals , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Crohn Disease/immunology , Crohn Disease/microbiology , Crohn Disease/pathology , Disease Models, Animal , Electrophysiological Phenomena , Enterocytes/metabolism , Enterocytes/pathology , Escherichia coli/metabolism , Escherichia coli/pathogenicity , Humans , Immunity, Mucosal , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Knockout , Permeability
8.
Berl Munch Tierarztl Wochenschr ; 127(11-12): 421-7, 2014.
Article in English | MEDLINE | ID: mdl-25872251

ABSTRACT

Enterobacteriaceae such as Escherichia coli are common commensals as well as opportunistic and obligate pathogens. They cause a broad spectrum of infectious diseases in various hosts, including hospital-associated infections. In recent years, the rise of extended spectrum beta-lactamase (ESBL)-producing E. coli in companion animals (dogs, cats and horses) has been striking. However, reports on nosocomial infections are mostly anecdotic. Here we report on the suspected nosocomial spread of both ESBL-producing and non-ESBL-producing multi-drug resistant E. coli isolates in three equine patients within an equine clinic. Unlike easy-to-clean hospitalization opportunities available for small animal settings like boxes and cages made of ceramic floor tiles or stainless steel, clinical settings for horses are challenging environments for infection control programs due to unavoidable extraneous material including at least hay and materials used for horse bedding. The development of practice-orientated recommendations is needed to improve the possibilities for infection control to prevent nosocomial infections with multi-drug resistant and other transmissible pathogens in equine clinical settings.


Subject(s)
Cross Infection/veterinary , Escherichia coli Infections/veterinary , Escherichia coli/isolation & purification , Horse Diseases/microbiology , beta-Lactamases/biosynthesis , Animals , Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Environmental Microbiology , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Infections/microbiology , Female , Horses , Hospitals, Animal , Male , Microbial Sensitivity Tests , Retrospective Studies
9.
Berl Munch Tierarztl Wochenschr ; 127(11-12): 435-46, 2014.
Article in English | MEDLINE | ID: mdl-25872253

ABSTRACT

The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.


Subject(s)
Acinetobacter Infections/veterinary , Acinetobacter baumannii/drug effects , Animal Diseases/microbiology , Cross Infection/veterinary , Acinetobacter Infections/microbiology , Acinetobacter baumannii/pathogenicity , Animals , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Veterinary Medicine/statistics & numerical data
10.
Berl Munch Tierarztl Wochenschr ; 127(11-12): 486-97, 2014.
Article in German | MEDLINE | ID: mdl-25872258

ABSTRACT

With the rising importance of nosocomial infections in equine hospitals, increased efforts with regard to biosecurity and infection control are necessary. This even more since nosocomial infections are often associated with multi-drug resistant pathogens. Consequently, the implementation of targeted prevention programs is essential. Since nosocomial infections are usually multifactorial events, realization of only a single measure is rarely effective to overcome nosocomial spread in clinical practice. Equine patients may be colonized at admission with multi-drug resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and/or extended spectrum beta lactamase-producing (ESBL-) Enterobacteriaceae. Regardless of their individual resistance properties, these bacteria are common and usually unnoticed colonizers of either the nasopharynx or the intestinal tract. Also viral diseases caused by equine herpesvirus 1 (EHV-1) and EHV-4 may reach a clinic by patients which are latently infected or in the incubation period. To prevent nosocomal outbreaks, achieve an interruption in the infection chain and to eradicate infectious agents from the hospital environment, a professional hospital management is necessary. This should be adapted to both the wide range of pathogens causing nosocomial infections and the individual needs of equine patients. Amongst others, this approach includes a risk classification of equine patients at admission and information/enlightenment of the animal owners at discharge. An efficient management of inpatients, a targeted hygiene management and clear responsibilities with respect to biosecurity together with a surveillance of nosocomial infections form the cornerstone of infection control in equine hospitals.


Subject(s)
Cross Infection/veterinary , Disease Outbreaks/prevention & control , Horse Diseases/prevention & control , Hospitals, Animal , Infection Control/methods , Animals , Cross Infection/prevention & control , Drug Resistance, Bacterial , Horse Diseases/microbiology , Horses , Hygiene , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections/prevention & control , Staphylococcal Infections/veterinary
11.
BMC Genomics ; 12: 584, 2011 Nov 28.
Article in English | MEDLINE | ID: mdl-22122991

ABSTRACT

BACKGROUND: Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. RESULTS: Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. CONCLUSIONS: The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.


Subject(s)
Campylobacter jejuni/isolation & purification , Animals , Campylobacter jejuni/classification , Campylobacter jejuni/physiology , Food Microbiology , Humans , Phylogeny , Species Specificity
12.
Avian Dis ; 49(2): 269-73, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16094833

ABSTRACT

Based on recently published prevalence data of virulence-associated factors in avian pathogenic Escherichia coli (APEC) and their roles in the pathogenesis of colibacillosis, we developed a multiplex polymerase chain reaction (PCR) as a molecular tool supplementing current diagnostic schemes that mainly rely on serological examination of strains isolated from diseased birds. Multiple isolates of E. coli from clinical cases of colibacillosis known to possess different combinations of eight genes were used as sources of template DNA to develop the multiplex PCR protocol, targeting genes for P-fimbriae (papC), aerobactin (iucD), iron-repressible protein (irp2), temperature-sensitive hemagglutinin (tsh), vacuolating autotransporter toxin (vat), enteroaggregative toxin (astA), increased serum survival protein (iss), and colicin V plasmid operon genes (cva/cvi). In order to verify the usefulness of this diagnostic tool, E. coli strains isolated from fecal samples of clinically healthy chickens were also included in this study, as were uropathogenic (UPEC), necrotoxigenic, and diarrhegenic E. coli strains. The application of the multiplex PCR protocol to 14 E. coli strains isolated from septicemic poultry showed that these strains harbored four to eight of the genes mentioned above. In contrast, those isolates that have been shown to be nonpathogenic for 5-wk-old chickens possessed either none or, at most, three of these genes. We found only one enterohemorrhagic (EHEC), one enteropathogenic (EPEC), and two enterotoxic (ETEC) E. coli strains positive for irp2, and another two ETEC strains positive for astA. As expected, UPEC isolates yielded different combinations of the genes iss, papC, iucD, irp2, and a sequence similar to vat. However, neither the colicin V operon genes cva/cvi nor tsh were amplified in UPEC isolates. The multiplex PCR results were compared with those obtained by DNA-DNA-hybridization analyses to validate the specificity of oligonucleotide primers, and the protocol was concluded to be a useful, sensitive, and rapid assay system to detect avian pathogenic E. coli and differentiate them from nonpathogenic strains and those belonging to other pathotypes.


Subject(s)
DNA/chemistry , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Genes, Bacterial/genetics , Polymerase Chain Reaction/veterinary , Poultry Diseases/genetics , Poultry Diseases/microbiology , Animals , DNA Primers , Electrophoresis, Agar Gel/veterinary , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Feces/microbiology , Nucleic Acid Hybridization , Polymerase Chain Reaction/methods , Poultry , Species Specificity , Transition Temperature
13.
Vet Microbiol ; 104(1-2): 91-101, 2004 Nov 30.
Article in English | MEDLINE | ID: mdl-15530743

ABSTRACT

The molecular biology and epidemiology of 150 avian pathogenic Escherichia coli strains (APEC) isolated from septicemic poultry in Germany was investigated by serotyping, pulsed field gel electrophoresis (PFGE), and polymerase chain reaction (PCR). Only 49.6% of the isolates could be grouped to serogroups O1, O2, and O78. Macrorestriction analyses data revealed two large clonal groups (clusters I and II) among the APEC strains with a similarity of 60.9% to each other. An association between restriction pattern and serogroup or origin of the strains was only present in a few subgroups of each clusters I and II, but was not evident. In contrast, our data revealed distinct combinations of virulence-associated genes in that 51.2% of the O2-strains harboured a combination of the genes fyuA, irp2, iucD, tsh, vat, fimC, and colV and 36.4% of the O78-strains possessed the same gene combination with exception of vat. With 34 different gene combinations the non-O1, -O2, -O78 isolates revealed a higher variability in their virulence gene pattern than O1-, O2-, and O78-strains with 6, 13, and 9 patterns, respectively. Our data indicate only a limited association between the virulence gene pattern and the serogroup of APEC strains and question the sensitivity of O-typing for APEC identification without the application of further diagnostic tools. Although a limited number of APEC clones exist, horizontal gene transfer seems to be common in these pathogens. These findings strengthen further research on the population structure of APEC and may be the reason for the lack of clear definition of this common E. coli pathotype.


Subject(s)
Chickens , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field/veterinary , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Female , Germany/epidemiology , Molecular Epidemiology , Nucleic Acid Hybridization , O Antigens , Polymerase Chain Reaction/veterinary , Sepsis/epidemiology , Sepsis/microbiology , Sepsis/veterinary , Virulence/genetics
14.
Berl Munch Tierarztl Wochenschr ; 116(9-10): 381-95, 2003.
Article in German | MEDLINE | ID: mdl-14526468

ABSTRACT

Infections with avian pathogenic Escherichia coli (APEC) cause colibacillosis, an acute and mostly systemic disease resulting in significant economic losses in poultry industry worldwide. Avian colibacillosis is a complex syndrome characterized by multiple organ lesions with airsacculitis and associated pericarditis, perihepatitis and peritonitis being most typical. Environmental factors as well as the constitution of poultry or initial viral infections influence the outcome of APEC-infections. However, several challenge experiments in chickens proofed the role of virulent APEC strains as the single aetiological agent. Currently serotypes O1:K1, O2:K1 and O78:K80 are recognized as the most prevalent, however the number of published serotypes is increasing. In addition, single APEC isolates vary profoundly in virulence, and knowledge about the molecular basis of this variability is still scarce. Known virulence factors of APEC are adhesins (F1- and P-fimbriae), iron acquisition systems (aerobactin and yersiniabactin), hemolysins (hemolysinE and temperaturesensitive hemagglutinin), resistance to the bactericidal effects of serum and phagocytosis (outer membrane protein, iss protein, lipopolysaccharide, K/1)-capsule and colilcin production) as well as toxins and cytotoxins (heat stable toxin, cyto-/verotoxin and flagella toxin). Esperimental studies have shown that the respiratory tract, principally the gas-exchange region of the lung and the interstitium of the air sacs are the most important sites of entry for avian pathogenic E. coli. APEC strains adhere to the epithelial cells of air sacs presumably through F1-fimbriae. After colonization and multiplication the bacteria enter the bloodstream, and the temperature-sensitive hemagglutinin (tsh) seems to be important int his step. After invading the bloodstream APEC cause a septicemia resulting in massive lesins in multiple internal organs and in sudden death of the birds. The ability of the bacteria to acquire iron and the resistance to the bactericidal effects of serum, predominantly conferred by the increased serum survival (iss)--protein, enables APEC to multiply quickly in their hosts. Iss is regarded a specific genetic marker for avian pathogenic E. colistrains. A critical review of the literature published so far on APEC reveals, that these pathotypes are not defined appropriately. This findings urge investigations on the population structure of APEC, enabling the establishment of appropriate diagnostic tools and avoiding the obsolete use of serotyping for APEC diagnosis. So far more than 20 APEC strains have been investigated in animal experiments, explaining contrary published results. Thus, the lack of knowledge in pathogenicity and in immunity of APEC infections urges further experimental studies. As APEC share not only identical serotypes with human pathogens but also specific virulence factors, their zoonotic potential is under consideration.


Subject(s)
Chickens , Escherichia coli Infections/veterinary , Escherichia coli/pathogenicity , Poultry Diseases/microbiology , Adhesins, Escherichia coli/biosynthesis , Animals , Blood Bactericidal Activity , Escherichia coli Infections/diagnosis , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Poultry Diseases/diagnosis , Poultry Diseases/immunology , Virulence , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...