Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21260357

ABSTRACT

Confronted with an emerging infectious disease, the medical community faced relevant concerns regarding the performance of autopsies of COVID-19 deceased at the beginning of the pandemic. This attitude has changed, and autopsies are now recognized as indispensable tools for elucidating COVID-19; despite this, the true risk of infection for autopsy staff is still debated. To elucidate the rate of SARS-CoV-2 contamination in personal protective equipment (PPE), swabs were taken at nine locations of the PPE of one physician and an assistant each from 11 full autopsies performed at four different centers. Further samples were obtained for three minimally invasive autopsies (MIA) conducted at a fifth center. Lung/bronchus swabs of the deceased served as positive controls. SARS-CoV-2 RNA was detected by RT-qPCR. In 9/11 full autopsies PPE samples were tested RNA positive with PCR, in total 21% of all PPE samples taken. The main contaminated parts of the PPE were the gloves (64% positive), the aprons (50% positive), and the upper sides of shoes (36% positive) while for example the fronts of safety goggles were only positive in 4.5% of the samples and all face masks were negative. In MIA, viral RNA was observed in one sample from a glove, but not in other swabs. Infectious virus isolation in cell culture was performed in RNA positive swabs from full autopsies. Of all RNA positive PPE samples, 21% of the glove samples were positive for infectious virus taken in 3/11 full autopsies. In conclusion, in >80% of autopsies, PPE was contaminated with viral RNA. In >25% of autopsies, PPE was found to be even contaminated with infectious virus, signifying a potential risk of infection among autopsy staff. Adequate PPE and hygiene measures, including appropriate waste deposition, are therefore mandatory to enable safe work environment.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-424644

ABSTRACT

BackgroundCoagulopathy and inflammation are hallmarks of Coronavirus disease 2019 (COVID-19) and are associated with increased mortality. Clinical and experimental data have revealed a role for neutrophil extracellular traps (NETs) in COVID-19 disease. The mechanisms that drive thrombo-inflammation in COVID-19 are poorly understood. MethodsWe performed proteomic analysis and immunostaining of postmortem lung tissues from COVID-19 patients and patients with other lung pathologies. We further compared coagulation factor XII (FXII) and DNase activities in plasma samples from COVID-19 patients and healthy control donors and determined NET-induced Factor XIII (FXII) activation using a chromogenic substrate assay. FindingsFXII expression and activity were increased in the lung parenchyma, within the pulmonary vasculature and in fibrin-rich alveolar spaces of postmortem lung tissues from COVID-19 patients. In agreement with this, plasma FXII activation (FXIIa) was increased in samples from COVID-19 patients. Furthermore, FXIIa colocalized with NETs in COVID-19 lung tissue indicating that NETs accumulation leads to FXII contact activation in COVID-19. We further showed that an accumulation of NETs is partially due to impaired NET clearance by extracellular DNases as DNase substitution improved NET dissolution and reduced FXII activation in vitro. InterpretationCollectively, our study supports that the NETs/FXII axis contributes to the pathogenic chain of procoagulant and proinflammatory responses in COVID-19. Targeting both, NETs and FXIIa, could provide a strategy to mitigate COVID-19-induced thrombo-inflammation. FundingThis study was supported by the European Union (840189), the Werner Otto Medical Foundation Hamburg (8/95) and the German Research Foundation (FR4239/1-1, A11/SFB877, B08/SFB841 and P06/KFO306).

SELECTION OF CITATIONS
SEARCH DETAIL
...