Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(1)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37607504

ABSTRACT

The development of sensing technologies and miniaturization allows for the development of smart systems with elevated sensing performance. Silicon-based hydrogen sensors have received a lot of attention due to its electrical conductivity and the mechanical endurance. With this motivation, we have proposed a two-terminal silicon-based device in a crossbar architecture as a hydrogen gas sensing platform. In this work, we have adopted a multi-layer modeling approach to analyze the performance of the proposed system. Technology computer-aided design models have been used to capture device performance. A gas sensor model based on hydrogen adsorption on the Palladium surface and a crossbar model has been adopted to understand the Palladium work function variation with gas pressure and the performance of the proposed crossbar system respectively. We have shown the impact of parameters like interconnect resistance and array size on the whole system's performance. Finally, a comprehensive analysis has been provided for the design rule of this architecture. A fabrication process to spur future experimental works has also been added. This work will provide computational insight into the performance of a crossbar hydrogen sensor system, optimized against some critical parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...