Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(19): 10208-10216, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695840

ABSTRACT

Per- and polyfluoroalkyl substances are an emerging class of contaminants that are environmentally persistent, bioaccumulative, and noxious to human health. Among these, perfluorooctanoic acid (PFOA) molecules are widely found in ground and surface water sources. A novel high surface area, meso- and macroporous syndiotactic polystyrene (sPS) wet gel is used in this work as the adsorbent of PFOA molecules from water at environmentally relevant PFOA concentrations (≤1 µg/L) and cleanse water to below the U.S. EPA's 2023 health advisory limit of 4 parts per trillion (ppt). The sigmoidal shape of the PFOA adsorption isotherm indicates a two-step adsorption mechanism attributed to the strong affinity of PFOA molecules for the sPS surface and molecular aggregation at solid-liquid interfaces or within the pores of the sPS wet gel. The adsorption kinetics and the effects of sPS wet gel porosity, pore size, and pore volume on the removal efficiency are reported. The adsorption kinetics is seen to be strongly dependent on pore size and pore volume.

2.
Langmuir ; 38(44): 13558-13568, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36279503

ABSTRACT

An understanding of surfactant adsorption at solid-liquid interfaces is important for solving many technological problems. This work evaluates surfactant adsorption abilities of high surface area (200-600 m2/g), high porosity (>90%), hierarchically structured open pore polymer gels. Specifically, the interactions of a nonionic block copolymer surfactant, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), with three polymer gels, namely, syndiotactic polystyrene (sPS), polyimide (PI), and polyurea (PUA) offering different surface energy values, are evaluated at surfactant concentrations below and well above the critical micelle concentration (CMC). Two distinct surfactant adsorption behaviors are identified from the surface tension and nuclear magnetic resonance data. At concentrations below CMC, the surfactant molecules adsorb as a monolayer on polymer strands, inferred from the Langmuir-type adsorption isotherm, with the adsorbed amount increasing with the specific surface area of the polymer gel. The study reports for the first time that the gels show a strong surfactant adsorption above CMC, with the effective surfactant concentration in the gel reaching several folds of the CMC values. The effective surfactant concentration in the gel is analyzed using surfactant micelle size, polymer surface energy, and pore size of the gel. The findings of this study may have strong implications in liquid-liquid separation problems and in the removal of small dye molecules, heavy metal ions, and living organisms from aqueous streams.

3.
Micromachines (Basel) ; 13(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35630147

ABSTRACT

Significant growth has been observed in the research domain of dye-sensitized solar cells (DSSCs) due to the simplicity in its manufacturing, low cost, and high-energy conversion efficiency. The electrolytes in DSSCs play an important role in determining the photovoltaic performance of the DSSCs, e.g., volatile liquid electrolytes suffer from poor thermal stability. Although low volatility liquid electrolytes and solid polymer electrolytes circumvent the stability issues, gel polymer electrolytes with high ionic conductivity and enduring stability are stimulating substitutes for liquid electrolytes in DSSC. In this review paper, the advantages of gel polymer electrolytes (GPEs) are discussed along with other types of electrolytes, e.g., solid polymer electrolytes and p-type semiconductor-based electrolytes. The benefits of incorporating ionic liquids into GPEs are highlighted in conjunction with the factors that affect the ionic conductivity of GPEs. The strategies on the improvement of the properties of DSSCs based on GPE are also presented.

4.
Materials (Basel) ; 13(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230771

ABSTRACT

We report the morphologies of tin-doped indium oxide (ITO) hollow microtubes and porous nanofibers produced from precursor solutions of polyvinylpyrrolidone (PVP), indium chloride (InCl3), and stannic chloride (SnCl4). The polymer precursor fibers are produced via a facile gas jet fiber (GJF) spinning process and subsequently calcined to produce ITO materials. The morphology shows strong dependence on heating rate in calcination step. Solid porous ITO nanofibers result from slow heating rates while hollow tubular ITO microfibers with porous shells are produced at high heating rates when calcined at a peak temperature of 700 °C. The mechanisms of formation of different morphological forms are proposed. The ITO fibers are characterized using several microscopy tools and thermogravimetric analysis. The concentration of inorganic salts in precursor solution is identified as a key factor in determining the porosity of the shell in hollow fibers. The data presented in this paper show that GJF method may be suitable for fabrication of hollow and multi-tubular metal oxide nanofibers from other inorganic precursor materials.

5.
J Colloid Interface Sci ; 561: 772-781, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31761464

ABSTRACT

This work focuses on fabrication of core-shell polyimide aerogel microparticles with and without a surfactant via oil-in-oil-in-oil (O/O/O) emulsion system aided by a simple microfluidic device. A double emulsion is formed through sequential, step-wise emulsification of co-flowing core and shell organic liquid streams in a simple microfluidic setup. The polyimide sol, introduced as the shell liquid, undergoes accelerated polymerization in a heated silicone oil bath to yield a porous polyimide shell around silicone oil core that eliminates the possibility of droplet coalescence or rupture. The core-shell gel microparticles are then isolated and supercritically dried to obtain core-shell aerogel microparticles. The diameter and shell thickness of hollow microparticles are studied as function of liquid flowrates in the microfluidic device and the viscosity of the shell liquid.

6.
ACS Omega ; 4(19): 18203-18209, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720521

ABSTRACT

A composite solid polymer electrolyte (CSPE) is studied in this work to alleviate the concerns associated with poor mechanical strength of a solid polymer electrolyte (SPE) system composed of poly(ethyleneglycol)diacrylate, an electrolyte lithium bis(trifluoromethane)sulfonamide, and a plasticizer succinonitrile. CSPE is fabricated by incorporating the ingredients of SPE in the macroporous membranes of syndiotactic polystyrene to render flexibility and mechanical robustness with a 6-fold increase in tensile strength over SPE. The data from differential scanning calorimetry and wide-angle X-ray diffraction confirm the amorphous nature of the polymeric domains of SPE that produce high room-temperature ionic conductivity of ∼0.43 mS/cm. The flexible CSPE membranes are used as the electrolyte in Li-ion battery (LIB) half cells in conjunction with lithium iron phosphate as the counter electrode. The use of CSPE helps expand the electrochemical window of the cell to 5 V, indicating strong potential in the fabrication of flexible rechargeable LIBs.

7.
Langmuir ; 35(6): 2303-2312, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30650304

ABSTRACT

This work focuses on the fabrication of polyimide aerogel microparticles of diameter 200-1000 µm from a surfactant-free, two-phase, silicone oil/dimethylformamide (DMF) oil-in-oil (O/O) system using a simple microfluidic device. The polyimide sol prepared in DMF is turned into droplets suspended in silicone oil in the microfluidic device. The droplets are guided to a heated silicone oil bath to accelerate sol-gel transition and imidization reactions, thereby yielding spherical, discrete gel microparticles that do not undergo coalescence. The discrete gel microparticles are isolated and supercritically dried to obtain aerogel microparticles. The microparticle size distribution shows dependence on dispersed and continuous phase flowrates in the microfluidic channels. The microparticle surface morphology shows dependence on the silicone oil bath temperature.

8.
Eng Fract Mech ; 206: 131-146, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-32905536

ABSTRACT

Shape Memory Alloy (SMA) was placed within Polymer Matrix Composite (PMC) panels alongside film adhesives to examine bonding. Double cantilever beam (DCB) testing was performed using ASTM D5528. C-scanning was performed before testing, modal acoustic emissions (MAE) were monitored during testing, and microscopy performed post-test. Data was analyzed using modified beam theory (MBT), compliance calibration (CC) and modified compliance calibration (MCC) methods. Fracture toughness for control specimens was higher than previously reported due to fiber-bridging. Specimens with SMAs and adhesives stabilized crack propagation. Results revealed SMA-bridging; a phenomenon mimicking fiber-bridging which increased the load and fracture toughness of SMA specimens.

9.
Mech Mater ; 131: 22-32, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33005067

ABSTRACT

A single sheet of nickel-titanium (NiTi) shape memory alloy (SMA) was introduced within an IM7/8552 polymer matrix composite (PMC) panel in conjunction with multiple thin film adhesives to promote the interfacial bond strength between the SMA and PMC. End notched flexure (ENF) testing was performed in accordance to ASTM D7905 method for evaluation of mode II interlaminar fracture toughness (GIIC) of unidirectional fiber-reinforced polymer matrix composites. Acoustic emissions (AE) were monitored during testing with two acoustic sensors attached to the specimens. The composite panels examined using scanning electron microscopy techniques after part failure. GIIC values for the control composite samples were found to be higher than those of samples with embedded SMA sheets. The presence of adhesives bonded to SMA sheets further diminished the GIIC values. AE values revealed poor bonding of the panels, with little to no signals during testing.

10.
Langmuir ; 34(29): 8581-8590, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29957959

ABSTRACT

This work evaluates the effects of solvents and a block copolymer surfactant on pore structures in polyimide aerogels synthesized via sol-gel reaction process. Specifically, cross-linked polyimide gel networks are synthesized in single or mixed solvents from a combination of dimethylformamide, N-methylpyrrolidone, and dimethylacetamide and supercritically dried to obtain aerogels. The bulk density, pore size, and mechanical properties of aerogels are determined. The results show that gel times are strongly dependent on the electron acceptance ability of the solvent system and concentration of the surfactant. At longer gel times, the polyimide strands coarsen and the pores in aerogel shift from predominantly mesoporous to macroporous state with corresponding reduction in compressive modulus. The block copolymer surfactant also slows down gelation and coarsens the polyimide strands but only weakly affects the compressive modulus of the aerogels.

11.
Langmuir ; 33(44): 12729-12738, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29048907

ABSTRACT

The water-in-oil emulsion-templating method is used in this work for fabrication of open cell aerogel foams from syndiotactic polystyrene (sPS). A surfactant-stabilized emulsion is prepared at 60-100 °C by dispersing water in a solution of sPS in toluene. sPS gel, formed upon cooling of the emulsion to room temperature, locks the water droplets inside the gel. The gel is solvent exchanged in ethanol and then dried under supercritical condition of carbon dioxide to yield the aerogel foams. The aerogel foams show a significant fraction of macropores with a diameter of a few tens of micrometers, defined as macrovoids that originated from the emulsified water droplets. In conjunction, customary macropores of diameter 50-200 nm are derived from sPS gels. The macrovoids add additional openness to the aerogel structures. This paper evaluates the structural characteristics of the macrovoids, such as diameter distribution, macrovoid interconnect density, and skin layer density, in conjunction with the final aerogel foam properties.

12.
ACS Appl Mater Interfaces ; 9(36): 30933-30942, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28816433

ABSTRACT

This work focuses on ionogel membranes for use in Li-ion batteries fabricated from syndiotactic polystyrene (sPS) gels filled with ionic liquids (ILs). The aim is to increase the operating temperature of Li-ion batteries. Thermal stability and safe operation of Li-ion batteries are two key attributes for their success in hybrid vehicles and other high-temperature applications. The volatility of the liquid electrolytes in current lithium-ion battery technology causes thermal runaway leading to fire, explosion, and swelling of the cell. The approach followed in this work combines the thermal stability and ruggedness of sPS and the extremely low volatility of ILs. The performances of lithium metal/graphite half-cells fabricated with ionogel membranes and those with Celgard-3501 membranes are evaluated at both room temperature and at elevated temperatures of 100 °C. Our data show that the cells with ionogel membranes can be operated continuously at 100 °C without failure. In addition, better charge-discharge capacity is obtained due to high ionic conductivity and high electrolyte retention both derived from high porosity of sPS gels and better wetting of sPS by the ILs.

13.
ACS Appl Mater Interfaces ; 9(35): 30074-30082, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28806054

ABSTRACT

The suitability of monolithic polyimide aerogels as filter media for removal of airborne nanoparticles was investigated in this work by considering two solvents, N-methylpyrrolidone (NMP) and dimethylformamide (DMF) for tuning of meso- and macropore content. Polyimide gels were synthesized from the chemical reactions between solutions of pyromellitic dianhydride, 2,2'-dimethylbenzidine, and 1, 3, 5-triaminophenoxylbenzene. The gels were dried via supercritical drying in CO2 to obtain the aerogels. The porosity of polyimide aerogels was varied by changing the initial concentration of the solids in the solutions in the range of 2.5-10 wt %. The resulting aerogels show high porosity (91-98%), high specific surface area (473-953 m2/g), low bulk density (0.025-0.12 g/cm3), and solvent dependent macro- and mesopore content. The monoliths with bulk density of >0.05 g/cm3 produced high values of nanoparticle filtration efficiency (>99.95%) with air permeability of the order of 10-10 m2. A strong proportional relationship was observed between the macropore content and air permeability and between the mesopore content and high filtration efficiency. Specimens prepared in DMF and NMP offered the same level of filtration efficiency, but the former provided a factor of 2 higher air permeability due to much greater proportion of macropores.

14.
ACS Appl Mater Interfaces ; 9(7): 6401-6410, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28177211

ABSTRACT

The role of electrostatic force on separation of airborne nanoparticles is evaluated in this work by considering a hybrid monolithic aerogel of syndiotactic polystyrene (sPS) and polyvinylidene fluoride (PVDF). The sPS part accounts for open pore structures in the monolith, while the PVDF chains contribute spontaneous polarity for particle capture by the electrostatic force. The hybrid aerogels are fabricated by thermoreversible gelation of sPS from a solution with PVDF in tetrahydrofuran followed by supercritical drying of the gel. sPS is present as the δ-form clathrate crystalline phase and PVDF as α- and γ-form crystalline phases in the hybrid. The presence of PVDF induces significant static charges on the surfaces of hybrid aerogels. The filtration efficiency is determined by passing airborne NaCl nanoparticles with diameter in the range 25-150 nm through the filter media. The experimental data reveal that air permeability of the hybrid system (∼10-10 m2) is close to that of sPS monoliths. The hybrid materials show filtration efficiency ≥99.999% in comparison to 98.889% observed for a sPS monolith with the same solid content.

15.
ACS Appl Mater Interfaces ; 8(33): 21683-90, 2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27486993

ABSTRACT

Polymer nanofibers with interpenetrating network (IPN) morphology are used in this work for the development of composite, hydrophobic filter media in conjunction with glass fibers for removal of water droplets from ultralow sulfur diesel (ULSD). The nanofibers are produced from hydrophobic polyvinyl acetate (PVAc) and hydrophilic polyvinylpyrrolidone (PVP) by spinning the polymer solutions using gas jet fiber (GJF) method. The nanofibers coat the individual glass fibers due to polar-polar interactions during the spinning process and render the filter media highly hydrophobic with a water contact angle approaching 150°. The efficiency of the resultant filter media is evaluated in terms of separation of water droplets of average size 20 µm from the suspensions in ULSD.

16.
Langmuir ; 32(22): 5637-45, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27183146

ABSTRACT

This paper reports preparation of polymer aerogel microparticles via sol-gel reactions inside micrometer size droplets created in an oil-in-oil emulsion system. The oil-in-oil emulsion system is obtained by dispersing in cyclohexane the droplets of the sols of polybenzoxazine (PBZ) or polyimide (PI) prepared in dimethylformamide. The sol droplets transform into harder gel microparticles due to sol-gel reactions. Finally, the aerogel microparticles are recovered using supercritical drying of the gel microparticles. The PBZ and PI aerogel microparticles prepared in this manner show mean diameter 32.7 and 40.0 µm, respectively, mesoporous internal structures, and surface area 55.4 and 512.0 m(2)/g, respectively. Carbonization of PBZ aerogel microparticles maintains the mesoporous internal structures but yields narrower pore size distribution.

17.
ACS Appl Mater Interfaces ; 5(13): 6423-9, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23773123

ABSTRACT

A class of inorganic-organic hybrid mesoporous aerogel structure was synthesized by growing gel in a gel. In Type 1, silica gels were grown inside the macropores of thermoreversible syndiotactic polystyrene (sPS) gel, while Type 2 hybrid aerogels were obtained by thermoreversible gelation of sPS chains in the mesopores of preformed silica gel. The hybrid gels were converted into aerogels by exchanging the solvent with liquid carbon dioxide followed by supercritical drying. The hybrid aerogels presented cocontinuous networks of pearl-necklace silica particles and crystalline strands of sPS and exhibited the "petal effect" due to the presence of superhydrophobic sPS and hygroscopic silica. The compressive modulus and compressive strain show large enhancements over sPS and silica aerogels indicating synergy, although Type 1 hybrid aerogels were found to be more robust. The hybrid aerogels showed fast absorption and high absorption capacity for a representative hydrocarbon liquid.

18.
Langmuir ; 29(20): 6156-65, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23611433

ABSTRACT

Proper selection of silane precursors and polymer reinforcements yields more durable and stronger silica aerogels. This paper focuses on the use of silane-end-capped urethane prepolymer and chain-extended polyurethane for reinforcement of silica aerogels. The silane end groups were expected to participate in silica network formation and uniquely determine the amounts of urethanes incorporated into the aerogel network as reinforcement. The aerogels were prepared by one-step sol-gel process from mixed silane precursors tetraethoxysilane, aminopropyltriethoxysilane (APTES), and APTES-end-capped polyurethanes. The morphology and mechanical and surface properties of the resultant aerogels were investigated in addition to elucidation of chemical structures by solid-state (13)C and (29)Si nuclear magnetic resonance. Modification by 10 wt % APTES-end-capped chain-extended polyurethane yielded a 5-fold increase in compressive modulus and 60% increase in density. APTES-end-capped chain-extended polyurethane was found to be more effective in enhancement of mechanical properties and reduction of polarity.


Subject(s)
Gels/chemistry , Polyurethanes/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Molecular Structure , Particle Size , Polyurethanes/chemical synthesis , Surface Properties
19.
Langmuir ; 29(18): 5589-98, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23573990

ABSTRACT

This study evaluates a method for rendering syndiotactic polystyrene (sPS) aerogels hydrophilic using polyethylene oxide (PEO) of different molecular weights. The highly porous sPS aerogels are inherently hydrophobic although applications involving absorption of moisture and removal of particulate solids may benefit from the high surface area of sPS aerogels provided some degree of hydrophilicity is induced in these materials. In this work, sPS gels are prepared by thermo-reversible gelation in tetrahydrofuran in the presence of PEO. The gels are dried under supercritical conditions to obtain aerogels. The aerogels are characterized by scanning electron microscopy, nitrogen-adsorption porosimetry, helium pycnometry, and contact angle measurements. The data reveal that the pore structures and surface energy can be controlled by varying the concentration and molecular weight of PEO and using different cooling rates during thermo-reversible gelation. In the first case, sPS aerogels, aerogels containing PEO of a low molecular weight or low concentration show superhydrophobic surface presenting the "lotus effect". In the second case, PEO at a higher concentration or with higher molecular weight forms phase-separated domains yielding new hydrophilic macropores (>10 µm) in the aerogel structures. These macropores contribute to the superhydrophobic surface with the "petal effect". The cooling rate during gelation shows a strong influence on these two cases.


Subject(s)
Polystyrenes/chemistry , Gels/chemistry , Particle Size , Surface Properties
20.
Langmuir ; 28(43): 15362-71, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23046155

ABSTRACT

This study evaluated polyhedral oligomeric silsesquioxane (POSS) molecules as useful, multifunctional reinforcing agents of silica aerogels. Silica aerogels have low-density and high surface area, although their durability is often compromised by the inherent fragility and strong moisture absorption behavior of the silica networks. POSS molecules carrying phenyl, iso-butyl, and cyclohexyl organic side groups, and several Si-OH functionalities were incorporated into silica networks via reactions between Si-OH functionalities in POSS molecules and silanes. Solid state (13)C and (29)Si NMR spectra established that greater than 90% of POSS molecules grafted onto silica networks and led to an increase in fractal dimensions. An almost 6-fold increase in compressive modulus was achieved with less than 5 wt % trisilanol phenyl POSS, and a 50-fold decrease in polarity with negligible changes in density were seen in aerogels modified with less than 5 wt % trisilanol isobutyl POSS.

SELECTION OF CITATIONS
SEARCH DETAIL
...