Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1393886, 2024.
Article in English | MEDLINE | ID: mdl-38817933

ABSTRACT

Cyanobacteria respond to iron limitation by producing the pigment-protein complex IsiA, forming rings associated with photosystem I (PSI). Initially considered a chlorophyll-storage protein, IsiA is known to act as an auxiliary light-harvesting antenna of PSI, increasing its absorption cross-section and reducing the need for iron-rich PSI core complexes. Spectroscopic studies have demonstrated efficient energy transfer from IsiA to PSI. Here we investigate the room-temperature excitation dynamics in isolated PSI-IsiA, PSI, IsiA monomer complexes and IsiA aggregates using two-dimensional electronic spectroscopy. Cross analyses of the data from these three samples allow us to resolve components of energy transfer between IsiA and PSI with lifetimes of 2-3 ps and around 20 ps. Structure-based Förster theory calculations predict a single major timescale of IsiA-PSI equilibration, that depends on multiple energy transfer routes between different IsiA subunits in the ring. Despite the experimentally observed lifetime heterogeneity, which is attributed to structural heterogeneity of the supercomplexes, IsiA is found to be a unique, highly efficient, membrane antenna complex in cyanobacteria.

2.
J Phys Chem Lett ; 15(22): 5838-5847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38788163

ABSTRACT

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.


Subject(s)
Diatoms , Energy Transfer , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Diatoms/chemistry , Diatoms/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Spectrometry, Fluorescence , Chlorophyll/chemistry
3.
J Phys Chem B ; 127(33): 7309-7322, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37579317

ABSTRACT

In a two-dimensional (2D) optical spectrum of a multilevel system, there are diagonal peaks and off-diagonal cross-peaks that correlate the different levels. The time-dependent properties of these diagonal peaks and cross-peaks contain much information about the dynamics of the multilevel system. The time-dependent diagonal peakshape that depends on the spectral diffusion dynamics of the associated transition and characterized by the frequency-fluctuation correlation function (FFCF) is well studied. However, the time-dependent peakshape of a cross-peak that provides the correlation dynamics between different transitions is much less studied or understood. We derived the third-order nonlinear response functions that describe the cross-peaks in a 2D electronic spectrum of a multilevel system that arise from processes sharing a common ground state and/or from internal conversion and population transfer. We can use the center line slope (CLS) analysis to characterize the cross-peaks in conjunction with the diagonal peaks. This allows us to recover the frequency-fluctuation cross-correlation functions (FXCFs) between two transitions. The FXCF and its subsidiary quantities such as the initial correlation and the initial covariance between different transitions are important for studying the correlation effects between states in complex systems, such as energy-transfer processes. Furthermore, knowledge of how various molecular processes over different timescales affect simultaneously different transitions can also be obtained from the measured FXCF. We validated and tested our derived equations and analysis process by studying, as an example, the 2D electronic spectra of metal-free phthalocyanine in solution. We measured and analyzed the diagonal peaks of the Qx and Qy transitions and the cross-peaks between these two transitions of this multilevel electronic system and obtained the associated FFCFs and FXCFs. In this model system, we measured negative components of FXCF over the tens of picosecond timescale. This suggests that in phthalocyanine, the Qx and Qy transitions coupling with the solvent molecule motion are anticorrelated to each other.

4.
Phys Chem Chem Phys ; 21(26): 14341-14349, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-30702093

ABSTRACT

Polyacenes, such as anthracene, tetracene, pentacene etc., have been identified as potential candidates for singlet fission (SF) and triplet-triplet annihilation (TTA) processes in their crystalline and thin film forms as they possess significant singlet and triplet exciton couplings. Interestingly, phenyl-ethynyl substitution to anthracene at the 9,10 positions (9,10-bis(phenylethynyl)anthracene/BPEA) enhances the transverse π-electron conjugation and retains the planar structure even in the excited state. The excited singlet state S1 and the multi-excitonic state 1(TT) in BPEA are separated by ∼30 meV (∼250 cm-1) making it an ideal system for both SF and TTA applications. BPEA is very effective in photon up-conversion even for low input intensities. Transient absorption measurements of BPEA in n-hexane solution are inadequate for distinguishing the S1 state and the multi-excitonic state 1(TT), since the spectroscopic features are complex (mixed) due to the isoenergetic nature and the existence of an equilibrium between these states. However, ultrafast Raman loss spectroscopy reveals a systematic red shift and a blue shift in the central frequencies of the Raman modes corresponding to C[double bond, length as m-dash]C and C[triple bond, length as m-dash]C vibrational frequencies with time constants of ∼2.0 and ∼20 ps, respectively. Such a shift in the Raman frequencies is direct evidence of the structural changes that take place while changing from excited singlet state S1 to the multi-excitonic state on the potential surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...